Cracking in Brittle Coatings during Nanoindentation

Article Preview

Abstract:

The FIB/SEM investigations of the microstructure changes in the hard brittle W-C based coating deposited on softer steel substrate after nanoindentation tests revealed that a set of approximately equidistant circular cracks forms in the coating in a sink-in zone around the indent and single cracks appear under the indenter tip. Finite element modeling (FEM) indicated development and concentration of the highest principal tensile stresses in the sink-in zone and in the zone below the indenter, which are considered to be the reason for the experimentally observed cracking. The distance from the indenter tip to the first circular crack combined with the calibration curve obtained from the FEM of the location of tensile stress maxima in sink-in zone can be used as a simple method for the determination of the strength of the studied coatings.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

103-106

Citation:

Online since:

September 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992) 1564–1583.

DOI: 10.1557/jmr.1992.1564

Google Scholar

[2] B. Jönsson, S. Hogmark, Hardness measurements of thin films, Thin Solid Films 114 (1984) 257-269.

DOI: 10.1016/0040-6090(84)90123-8

Google Scholar

[3] ISO 14577-7: 2007 Metallic Materials – Instrumented indentation test for hardness and materials parameters, Part 4: Test method for metallic and non-metallic coatings, CEN (2007).

DOI: 10.3403/30091639u

Google Scholar

[4] P.J. Burnett, D.S. Rickerby, The mechanical properties of wear-resistant coatings. I: Modelling of hardness behaviour, Thin Solid Films 148 (1987) 41-50.

DOI: 10.1016/0040-6090(87)90119-2

Google Scholar

[5] S.J. Bull, D.S. Rickerby, New developments in the modelling of the hardness and scratch adhesion of thin films, Surf. Coat. Technol. 42 (1990) 149-164.

DOI: 10.1016/0257-8972(90)90121-r

Google Scholar

[6] A.M. Korsunsky, M.R. McGurk, S.J. Bull, T.F. Page, On the hardness of coated systems, Surf. Coat. Technol. 99 (1998) 171-183.

DOI: 10.1016/s0257-8972(97)00522-7

Google Scholar

[7] E.S. Puchi-Cabrera, A new model for the computation of the composite hardness of coated systems, Surf. Coat. Technol. 160 (2002) 177-186.

DOI: 10.1016/s0257-8972(02)00394-8

Google Scholar

[8] A.K. Bhattacharya, W.D. Nix, Finite-element simulation of indentation experiments, Int. J. Solids Struct. 24 (1988) 881-891.

DOI: 10.1016/0020-7683(88)90039-x

Google Scholar

[9] A. Iost, G. Guillemot, Y. Rudermann, M. Bigerelle, A comparison of models for predicting the true hardness of thin film, Thin Solid Films 524 (2012) 229-237.

DOI: 10.1016/j.tsf.2012.10.017

Google Scholar

[10] H. Pelletier, J. Crier, A. Cornet, P. Mille, Limits of using bilinear stress-strain curve for finite element modeling of nanoindentation response on bulk materials, Thin Solid Films 379 (2000) 147-155.

DOI: 10.1016/s0040-6090(00)01559-5

Google Scholar

[11] M. Lichinchi, C. Lenardi, J. Haupt, R. Vitali, Simulation of Berkovich nanoindentation experiment on thin films using the finite element method, Thin Solid Films 312 (1998) 240-248.

DOI: 10.1016/s0040-6090(97)00739-6

Google Scholar

[12] X. Cai, H. Bangert, Hardness measurements of thin films - determining the critical ratio of depth to thickness using FEM, Thin Solid Films 264 (1995) 59-71.

DOI: 10.1016/0040-6090(95)06569-5

Google Scholar

[13] Bolshakov, G.M. Pharr, Influence of pile up on the measurement of mechanical properties by load and depth sensing indentation techniques, J. Mater. Res. 13 (1998) 1049-1058.

DOI: 10.1557/jmr.1998.0146

Google Scholar

[14] A.A. Pelegri, X. Huang, Nanoindentation on soft/hard substrate and hard film/soft substrate material systems with finite element analysis, Comp. Sci. Technol. 68 (2008) 147-155.

DOI: 10.1016/j.compscitech.2007.05.033

Google Scholar

[15] F. Lofaj, P. Hviščová, L. Kvetková, Hard W-C based coatings by highly ionized sputtering technique, Proc. Vrstvy a povlaky 2014, Kníhviazačstvo, Trenčín (2014) 127-132.

Google Scholar

[16] P. Hviščová, L. Kvetková, F. Lofaj, M. Novák, M. Ferdinandy, R. Podoba, Mechanical and tribological properties of HiPIMS and HiTUS W-C based coatings, Key Engineering Materials, this issue.

DOI: 10.4028/www.scientific.net/kem.662.99

Google Scholar