The Use of the Ligament Augmentation and Reconstruction System (LARS) in Clinical Practice

Article Preview

Abstract:

Tendons and ligaments injuries have become more and more common due to the increase of the general populations interest in sports and physical activities. Beginning with the 1970s many researchers have tried to reconstruct the torn ligaments and tendons, at first using products such as Polyflex and Proplast ligaments, with poor results. In recent years the use LARS ligament has been researched. The Ligament Augmentation and Reconstruction System, now at its 3rd generation, is an artificial ligament made out of polyethylene terephthalate (PET) that over time allows tissue ingrowth, recreating the natural orientation of anatomical ligament and tendon fibers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

111-123

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Lu and S. Thomopoulos, Functional Attachment of Soft Tissues to Bone: Development, Healing and Tissue Engineering, Annu Rev Biomed Eng 15 (2013) 201-226.

DOI: 10.1146/annurev-bioeng-071910-124656

Google Scholar

[2] A. Moshiri and A. Oryan, Tendon and Ligament Tissue Engineering, Healing and Regenerative Medicine, J Sports Med Doping Stud 2 (2013).

DOI: 10.4172/2161-0673.1000126

Google Scholar

[3] R. Hauser, E. Dolan, H. Philips, A. Newlin, R. Moore and B. Woldin, Ligament Injury and Healing: A Review of Current Clinical Diagnostics and Therapeutics, The Open Rehabilitation Journal 6 (2013) 1-20.

DOI: 10.2174/1874943701306010001

Google Scholar

[4] C. Kou, J. Marturano and R. Tuan, Novel strategies in tendon and ligament tissue engineering: Advanced biomaterials and regeneration motifs, Sports Medicine, Arthroscopy, Rehabilitation, Therapy and Technology, 20 (2010).

DOI: 10.1186/1758-2555-2-20

Google Scholar

[5] T. Wang, B. Garnier , Z. Lin, J. Rubenson, T. Kirk, A. Wang, J. Xu, D. Smith, D. Lloyd and M. Zheng, Bioreactor Deign For Tendon/Ligament Engineering, "Tissue Engineering: Part B, 19 (2013) 133-46.

DOI: 10.1089/ten.teb.2012.0295

Google Scholar

[6] C. Legnani, A. Ventura, C. Terzaghi, E. Borgo and W. Albisetti, Anterior Cruciate Liagament Reconstruction with Synthetic Grafts. A Review of Literatura, International Orthopaedics (SICOT), 34 (2010), 465-471.

DOI: 10.1007/s00264-010-0963-2

Google Scholar

[7] S. Bdylak and T. Gilbert, Immune reponse to biologic scaffold materials, Semin Immunol, 20 (2008) 109-116.

Google Scholar

[8] S. Hsu, R. Liang and S. Woo, Functional tissue engineering of ligament healing, Sports Medicine, Arthroscopy, Rehabilitation, Therapy & Technology, 2 (2010) 10.

Google Scholar

[9] C. Park, H. Rios, J. Sugai, M. Padial Molina, A. Taut, C. Flanagan, S. Hollister and W. Giannobile, Tissue engineering bone-ligament complexes using fiber-guiding scaffolds, Biomaterials, 33 (2012) 137-145.

DOI: 10.1016/j.biomaterials.2011.09.057

Google Scholar

[10] K. Arvidson, B. Abdallah, L. Applegate, N. Baldini, E. Cenni, E. Gomez-Barrena, D. Granchi, M. Kassem, Y. Konttinen, K. Mustafa, D. Pioletti, T. Sillat and A. Finne-Wistrand, Bone regeneration and stem cells, J Cell Mol Med, 15 (2011) 718-746.

DOI: 10.1111/j.1582-4934.2010.01224.x

Google Scholar

[11] C. Evans, Advances in Regenerative Orthopaedics, Mayo Clinic Proc, 88 (2013) 1323-1339.

Google Scholar

[12] G. Yang, B. Rothrauff and R. Tuan, Tendon and Ligament regeneration and Repair: Clinical Relevance and Developmental Paradigm, Birth Defects Res C Embryo Today, 99 (2013), 203-222.

DOI: 10.1002/bdrc.21041

Google Scholar

[13] S. Juneja, E. Schwarz, R. O'Keefe and H. Awad, Cellular and molecular factors in flexor tendon repair and adhesions: a histological and gene expression analysis, Connective tissue research, 54 (2013) 218-226.

DOI: 10.3109/03008207.2013.787418

Google Scholar

[14] C. Yilgos, P. Huri and G. Huri, Tissue Engineering Strategies in Ligament Regeneration, Stem Cells Int, 2012 (2012).

DOI: 10.1155/2012/374676

Google Scholar

[15] C. Wang, W. Hou, M. Yan, Z. Gou, Q. Wu, L. Bi and Y. Han, Effects of Artificial Ligaments with Different Porous Structures on Migration of BMSCs, Stem Cell Int 6 (2015) 1-12.

DOI: 10.1155/2015/702381

Google Scholar

[16] C. Chen, Graft Healing in Anterior Cruciate Ligament Reconstruction, Sports Medicine, Arthroscopy, Rehabilitation, Therapy & Technology, 21 (2009).

Google Scholar

[17] C. Franciozi, S. McNeil Ingham, G. Gracitelli, M. Luzo, F. Fu and R. Abdalla, Updates in Biological Therapies for Knee Injuries: Anterior Cruciate Ligament, Curr Rev Musculoskelet Med, 7 (2014) 228-238.

DOI: 10.1007/s12178-014-9228-9

Google Scholar

[18] K. Hildebrand and C. Frank, Scar Formation and Ligament Healing, Can J Surg, 41 (1998) 425-429.

Google Scholar

[19] B. Moyen and J. Lerat, Artificial Ligaments for Anterior Cruciate Replacement, J Bone and Joint Surgery, 76B (1994) 173-5.

DOI: 10.1302/0301-620x.76b2.8113270

Google Scholar

[20] R. Mascarenhaus and P. MacDonald, Anterior cruciate ligament reconstruction: a look at prothesis -past, present and possible future, MJM, 11 (2008) 29-37.

DOI: 10.26443/mjm.v11i1.409

Google Scholar

[21] M. Barry, S. Thomon, A. Rees, B. Shafihian and M. Mowbray, Histological changes associated with an artificial anterior cruciate ligament, J Clin Pathol, 48 (1995) 556-559.

DOI: 10.1136/jcp.48.6.556

Google Scholar

[22] T. Nau, p. Lavoie and Duval N, A new generation of artificial ligaments in reconstruction of anterior cruciate ligament, J B &J Surg Br, 84B (2002) 356-360.

DOI: 10.1302/0301-620x.84b3.0840356

Google Scholar

[23] J. Struewer, E. Ziring, B. Ishaque, T. Efe, T. Schwarting, B. Buecking, K. Schuttler, S. Ruchholtz and T. Frangen, Second-look arthroscopic findings and clinical results after polyethylene terephthalate augmented ACL reconstruction, International Othopaedics (SICOT), 37 (2013).

DOI: 10.1007/s00264-012-1652-0

Google Scholar

[24] R. Prescott, W. Ryan and D. Bisset, Histopathological features of failed prosthetic Leeds-Keio anterior cruciate ligaments, J Clin Pathol, 47 (1994) 375-376.

DOI: 10.1136/jcp.47.4.375

Google Scholar

[25] H. Matsumoto and K. Fujikawa, Leeds-Keio artificial ligament: a new concept for the anterior cruciate ligament reconstruction of the knee, Keio J Med, 50 (2001), 161-166.

DOI: 10.2302/kjm.50.161

Google Scholar

[26] H. Mutsuzaki, Y. Yokoyama, A. Ito and A. Oyane, Formation of Apatite Coatings on an Artificial Ligament Using a Plasma and Precursor Assisted Biomimetic Process, Int J Mol Sci, 14 (2013).

DOI: 10.3390/ijms140919155

Google Scholar

[27] E. Olson, J. Kang, FuF, H. Georgescu, G. Mason and C. Evans, The biochemical and histological effects of artificial ligament wear particles: in vivo and in vitro studies, Am J Sports Med, 16 (1988) 558-569.

DOI: 10.1177/036354658801600602

Google Scholar

[28] A. Gledraitis, S. Arnoczky and A. Bedi, Allografts in Soft Tissue Reconstructive Procedures: important Considerations, Sports Health, 6 (2014) 256-264.

DOI: 10.1177/1941738113503442

Google Scholar

[29] H. Li, Y. Ge, Y. Wu, J. Jiang, K. Gao, P. Zhang, L. Wu and S. Chen, Hydroxyapatite coating enhances polyethylene terephthalate artificial ligament graft osseointegration in the bone tunnel, International Orthopaedics (SICOT), 35 (2011) 1561-1567.

DOI: 10.1007/s00264-010-1158-6

Google Scholar

[30] S. YU, R. Yang, Z. Zuo and Q. Dong, Histological characteristics and ultrastructure of polyethylene terephthalate LARS ligament after the reconstruction of anterior cruciate ligament in rabbits, Int J Clin Exp Med, 7 (2014) 2511-2518.

Google Scholar

[31] S. Newman, H. Atkinson and C. Willis-Owen, Anterior cruciate ligament reconstruction with the ligament augmentation and reconstruction system: a systematic review, International Orthopaedics (SICOT), 37 (2013) 321-326.

DOI: 10.1007/s00264-012-1654-y

Google Scholar

[32] K. Gao, S. Chen, L. Wang, W. Zhang, Y. Kang and Q. Dong , Anterior cruciate ligament reconstruction with LARS artificial ligament: a multicenter study with 3- to 5-year follow-up, Arthroscopy, 26 (2010) 515-523.

DOI: 10.1016/j.arthro.2010.02.001

Google Scholar

[33] C. Vaquette, V. Viateau, S. Guerard, F. Anagnostou, M. Manassero, D. Castner and V. Migonney, The effect of polystyrene sodium sulfonate grafting in polyethylene terephthalate artificial ligaments on in vivo mineralisation and in vivo bone tissue integration, Biomaterials, 34 (2013).

DOI: 10.1016/j.biomaterials.2013.05.058

Google Scholar

[34] S. Cho, H. Li, C. Chen, J. Jiang, H. Tao and S. Chen, Cationised gelatin and hyaluronic acid coating enhances polyethylene terephthalate artificial ligament graft osseointegration in porcine bone tunnels, International Orthopaedics (SICOT), 37 (2013).

DOI: 10.1007/s00264-012-1694-3

Google Scholar

[35] J. Jiang, F. Wan, J. Yang, W. Wao, Y. Wang, J. Yao, Z. Shao, P. Zhang, J. Chen, l. Zhou and S. Chen, Enhancement of osseointegration of polyethylene terephthalate artificial ligament by coating of silk fibroin and depositing of hydroxiapatite, Int J Nanomedicine, 9 (2014).

DOI: 10.2147/ijn.s69137

Google Scholar

[36] H. Lu, S. Subramony, M. Boushell and X. Zhang, Tissue engineering strategies for regeneration of orthopaedic interfaces: interface tissue engineering strategies, Ann Biomed Eng, 38 (2010) 2142-54.

DOI: 10.1007/s10439-010-0046-y

Google Scholar

[37] P. Parchi, C. Gianluca, L. Dolfi, A. Baluganti, P. Nicola, F. Chiellini and M. Lisanti, Anterior cruciate ligament reconstruction with LARS™ artificial ligament results at a mean follow-up of eight years, International Orthopaedics (SICOT), 37 (2013).

DOI: 10.1007/s00264-013-1917-2

Google Scholar

[38] G. J. Dericks, Ligament advanced reinforcement system anterior cruciate ligament reconstruction, Op Tech Sports Med, 3 (1995) 187-205.

DOI: 10.1016/s1060-1872(95)80009-3

Google Scholar

[39] Z. Li, Z. Zhang, Y. Jiang and B. Zeng, Four-strand hamstring tendon autograft versus LARS artificial ligament for anterior cruciate ligament reconstruction, International Orthopaedics (SICOT), 34 (2010) 45-49.

DOI: 10.1007/s00264-009-0768-3

Google Scholar

[40] B. Li, Y. Wen, H. Wu, Q. Qian, Y. Wu and X. Lin, Arthroscopic single-bundle posterior cruciate ligament reconstruction: retrospective review of hamstring tendon graft versus LARS artificial ligament, International Orthopaedics (SICOT), 33 (2009).

DOI: 10.1007/s00264-008-0628-6

Google Scholar

[41] S. Naim, N. Gougoulias and D. Griffiths, Patellar tendon reconstruction using LARS ligament: surgical technique and case report, Strat Traum Limb Recon, 6 (2011) 39-41.

DOI: 10.1007/s11751-010-0101-0

Google Scholar

[42] C. Taylor, R. Yarlagadda and J. Keenan, Repair of rectus femoris ruptura with LARS ligament, BMJ Case Reports, (2012) 3.

DOI: 10.1136/bcr.06.2011.4359

Google Scholar

[43] C. Soo, A. Kwa and S. Mungvan, LARS ligament repair of acute tendo-achilles ruture, J Bone Joint Surg Br, 94-B (2012).

Google Scholar

[44] S. Ibrahim, Surgical treatment of chronic Achilles tendon rupture, J Foot Ankle Surg, 48 (2009), 340-6.

DOI: 10.1053/j.jfas.2009.02.007

Google Scholar

[45] M. Petrie and A. Ismaiel, Treatment of massive rotator-cuff tears with a polyester ligament (LARS) patch, Acta Orthop Belg, 79 (2013) 620-5.

Google Scholar