Results of In Vivo Biological Tests Performed on a Mg-0.8Ca Alloy

Article Preview

Abstract:

Biodegradable magnesium-based alloys shows good prospects in their use as biodegradable orthopedic materials. The aim of this study is to demonstrate good biocompatibility and lack of local and systemic toxicity of some experimental implants made by magnesium alloy type Mg-Ca 0,8 [%wt]. The study was conducted by implanting some experimental pins made by magnesium alloy type Mg-Ca 0,8 [%wt] in bone, proximal femur and intramedullary tibia, and in thigh muscle of the rabbits. Also, we follow the evolution of blood levels of Mg, Ca, blood counts, liver and kidney function. The evolution of the experience animals was followed for 6 weeks by radiologic imaging, and taking blood samples. After 6 weeks, we obtain after euthanasia of animal experience the harvest blood samples, and musculoskeletal tissue samples for histopathological examination. The histopathology results have not demonstrated peri-implant cytotoxicity, bone and muscle cells being viable. Fibrosis at tissue implant border was minimal showing a good integration. There were no pathological increases in blood levels of Mg and Ca, or changes in blood counts, as well as no change in renal or hepatic function. All this experimental results demonstrates that the magnesium alloy type Mg-Ca 0,8 [%wt] represent a promising solution in orthopedic surgery, proving to be safe, with a high degree of biocompatibility, and without toxic effects.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

50-61

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Witte F., The history of biodegradable magnesium implants: A review, Acta Biomaterialia, 6 (2010) 1680–1692.

DOI: 10.1016/j.actbio.2010.02.028

Google Scholar

[2] Antoniac I., Handbook of Bioceramics and Biocomposites, Springer International Publishing, New York (2016) 935-967.

Google Scholar

[3] Saris N.E., Mervaala E., Karppanen H., Khawaja J.A., Lewenstam A., Magnesium. An update on physiological, clinical and analytical aspects, Clin Chim Acta, 294 (2000) 1-26.

DOI: 10.1016/s0009-8981(99)00258-2

Google Scholar

[4] Rude R.K., Magnesium metabolism and deficiency, Endocrinol Metab Clin North Am, 22 (1993) 377-395.

Google Scholar

[5] Fox C., Ramsoomair D., Carter C., Magnesium: its proven and potential clinical significance, South Med J, 94 (2001) 1195-1201.

DOI: 10.1097/00007611-200194120-00014

Google Scholar

[6] Razavi M., Fathi M.H., Meratian M., Microstructure, mechanical properties and bio-corrosion evaluation of biodegradable AZ91-FA nanocomposites for biomedical applications, Materials science and engineering: A, 527 (2010) 6938-6944.

DOI: 10.1016/j.msea.2010.07.063

Google Scholar

[7] Cha P.R., Han H.S., Yang G.F., Seok H.K., Biodegradability engineering of biodegradable Mg alloys: Tailoring the electrochemical properties and microstructure of constituent phases, Scientific Reports, 3: 2367 (2013) 1-6.

DOI: 10.1038/srep02367

Google Scholar

[8] Gu X., Zheng Y., Cheng Y., Zhong S., Xi T., In vitro corrosion and biocompatibility of binary magnesium alloys, Biomaterials, 30 (2009) 484-498.

DOI: 10.1016/j.biomaterials.2008.10.021

Google Scholar

[9] Zheng Y.F., Gu X.N., Witte F., Biodegradable metals, Materials Science and Engineering: R: Reports, 77 (2014) 1-34.

Google Scholar

[10] Gu X.N., Zheng Y.F., A review on magnesium alloys as biodegradable materials, Frontiers of Materials Science in China, 4 (2010) 111-115.

Google Scholar

[11] Zeng R., Dietzel W., Witte F., Hort N., Blawert C., Progress and challenge for magnesium alloys as biomaterials, Adv Eng Mater, 10 (2008) B3–B14.

DOI: 10.1002/adem.200800035

Google Scholar

[12] Antoniac I., Miculescu M., Dinu M., Metallurgical characterization of some magnesium alloys for medical applications, Solid State Phenomena, 188 (2012) 109-113.

DOI: 10.4028/www.scientific.net/ssp.188.109

Google Scholar

[13] Zhang S., Zhang X., Zhao C., Li J., Song Y., Xie C., Research on an Mg–Zn alloy as a degradable biomaterial, Acta Biomater, 6 (2010) 626–640.

DOI: 10.1016/j.actbio.2009.06.028

Google Scholar

[14] Zhang X.B., Yuan G.Y., Niu J.L., Fu P.H., Ding W.J., Microstructure, mechanical properties, biocorrosion behavior, and cytotoxicity of as-extruded Mg–Nd–Zn–Zr alloy with different extrusion ratios, J Mech Behav Biomed Mater, 9 (2012) 153–162.

DOI: 10.1016/j.jmbbm.2012.02.002

Google Scholar

[15] Peuster M., Wohlsein P., Brugmann M., Ehlerding M., Seidler K., Fink C., A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal – results 6–18 months after implantation into New Zealand white rabbits, Heart, 86 (2001).

DOI: 10.1136/heart.86.5.563

Google Scholar

[16] Blawert C., Dietzel W., Ghali E., Song G., Anodizing treatments for magnesium alloys and their effect on corrosion resistance in various environments, Adv Eng Mater, 8 (2006) 511–533.

DOI: 10.1002/adem.200500257

Google Scholar

[17] Hornberger H., Virtanen S., Boccaccini A.R., Biomedical coatings on magnesium alloys–A review, Acta Biomaterialia, 8 (2012) 2442–2455.

DOI: 10.1016/j.actbio.2012.04.012

Google Scholar

[18] Lorenz C., Brunner J.G., Kollmannsberger P., Jaafar L., Fabry B., Virtanen S., Effect of surface pre-treatments on biocompatibility of magnesium, Acta Biomater, 5 (2009) 2783–2789.

DOI: 10.1016/j.actbio.2009.04.018

Google Scholar

[19] Antoniac I., Vranceanu M.D., Antoniac A., The influence of the magnesium powder used as reinforcement material on the properties of some collagen based composite biomaterials, JOAM, 15 (2013) 667-672.

Google Scholar

[20] Witte F., Kaese V., Haferkamp H., Switzer E., Meyer-Lindenberg A., Wirth C., In vivo corrosion of four magnesium alloys and the associated bone response, Biomaterials, 26 (2005) 3557–3563.

DOI: 10.1016/j.biomaterials.2004.09.049

Google Scholar

[21] Li N., Zheng Y., Novel Magnesium Alloys Developed for Biomedical Application: A Review, J. Mater. Sci. Technol., 29 (2013) 489-502.

Google Scholar

[22] Trumbo P., Schlicker S., Yates A.A., Poos M., Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids, J Am Diet Assoc, 102 (2002) 1621–1630.

DOI: 10.1016/s0002-8223(02)90346-9

Google Scholar

[23] Feser K., Kietzmann M., Baumer W., Krause C., Bach F.W., Effects of degradable Mg-Ca alloys on dendritic cell function, J. Biomater. Appl., 25 (2011) 685–697.

DOI: 10.1177/0885328209360424

Google Scholar

[24] Li Z.J., Gu X.N., Lou S.Q., Zheng Y.F., The development of binary Mg–Ca alloys for use as biodegradable materials within bone, Biomaterials, 29 (2008) 1329–1344.

DOI: 10.1016/j.biomaterials.2007.12.021

Google Scholar

[25] Thomann M., Krause C., Bormann D., von der Hoh N., Windhagen H., Meyer-Lindenberg A., Comparison of the resorbable magnesium alloys LAE442 und MgCa0. 8 concerning their mechanical properties, their progress of degradation and the bone-implant contact after 12 months implantation duration in a rabbit model, Materialwiss. Werkst., 40 (2009).

DOI: 10.1002/mawe.200800412

Google Scholar

[26] Antoniac I.V., Miculescu M., Dinu M., Metallurgical characterization of some magnesium alloys for medical applications, Solid State Phenomena, 188 (2012) 109-113.

DOI: 10.4028/www.scientific.net/ssp.188.109

Google Scholar

[27] Blajan A.I., Miculescu F., Ciuca I., Cotrut C., Semenescu A., Antoniac I., Effect of Calcium Content on the Microstructure and Degradation of Mg-Ca Binary Alloys potentially used as Orthopedic Biomaterials, KEM, 638 (2014) 104-108.

DOI: 10.4028/www.scientific.net/kem.638.104

Google Scholar

[28] Mareci D., Bolat G., Izquierdo J., Crimu C., Munteanu C., Antoniac I., Souto R.M., Electrochemical characteristics of bioresorbable binary MgCa alloys in Ringer's solution: Revealing the impact of local pH distributions during in-vitro dissolution, Materials Science and Engineering: C, 60 (2016).

DOI: 10.1016/j.msec.2015.11.069

Google Scholar

[29] Bita A.I., Stan G.E., Niculescu M., Ciuca I., Vasile E., Antoniac I., Adhesion evaluation of different bioceramic coatings on Mg–Ca alloys for biomedical applications, JAST 30 (2016) 1968-(1983).

DOI: 10.1080/01694243.2016.1171569

Google Scholar

[30] Rau J.V., Antoniac I., Fosca M., De Bonis A., Blajan A.I., Cotrut C., Graziani V., Curcio M., Cricenti A., Niculescu M., Ortenzi M., Teghil R., Glass-ceramic coated Mg-Ca alloys for biomedical implant applications, Materials Science and Engineering: C, 64 (2016).

DOI: 10.1016/j.msec.2016.03.100

Google Scholar

[31] Bita A.I., Antoniac A., Cotrut C., Vasile E., Ciuca I., Niculescu M., Antoniac I., In vitro Degradation and Corrosion Evaluation of Mg-Ca Alloys for Biomedical Applications, JOAM, 18 (2016) 394-398.

DOI: 10.1080/01694243.2016.1171569

Google Scholar