[1]
Witte F., The history of biodegradable magnesium implants: A review, Acta Biomaterialia, 6 (2010) 1680–1692.
DOI: 10.1016/j.actbio.2010.02.028
Google Scholar
[2]
Antoniac I., Handbook of Bioceramics and Biocomposites, Springer International Publishing, New York (2016) 935-967.
Google Scholar
[3]
Saris N.E., Mervaala E., Karppanen H., Khawaja J.A., Lewenstam A., Magnesium. An update on physiological, clinical and analytical aspects, Clin Chim Acta, 294 (2000) 1-26.
DOI: 10.1016/s0009-8981(99)00258-2
Google Scholar
[4]
Rude R.K., Magnesium metabolism and deficiency, Endocrinol Metab Clin North Am, 22 (1993) 377-395.
Google Scholar
[5]
Fox C., Ramsoomair D., Carter C., Magnesium: its proven and potential clinical significance, South Med J, 94 (2001) 1195-1201.
DOI: 10.1097/00007611-200194120-00014
Google Scholar
[6]
Razavi M., Fathi M.H., Meratian M., Microstructure, mechanical properties and bio-corrosion evaluation of biodegradable AZ91-FA nanocomposites for biomedical applications, Materials science and engineering: A, 527 (2010) 6938-6944.
DOI: 10.1016/j.msea.2010.07.063
Google Scholar
[7]
Cha P.R., Han H.S., Yang G.F., Seok H.K., Biodegradability engineering of biodegradable Mg alloys: Tailoring the electrochemical properties and microstructure of constituent phases, Scientific Reports, 3: 2367 (2013) 1-6.
DOI: 10.1038/srep02367
Google Scholar
[8]
Gu X., Zheng Y., Cheng Y., Zhong S., Xi T., In vitro corrosion and biocompatibility of binary magnesium alloys, Biomaterials, 30 (2009) 484-498.
DOI: 10.1016/j.biomaterials.2008.10.021
Google Scholar
[9]
Zheng Y.F., Gu X.N., Witte F., Biodegradable metals, Materials Science and Engineering: R: Reports, 77 (2014) 1-34.
Google Scholar
[10]
Gu X.N., Zheng Y.F., A review on magnesium alloys as biodegradable materials, Frontiers of Materials Science in China, 4 (2010) 111-115.
Google Scholar
[11]
Zeng R., Dietzel W., Witte F., Hort N., Blawert C., Progress and challenge for magnesium alloys as biomaterials, Adv Eng Mater, 10 (2008) B3–B14.
DOI: 10.1002/adem.200800035
Google Scholar
[12]
Antoniac I., Miculescu M., Dinu M., Metallurgical characterization of some magnesium alloys for medical applications, Solid State Phenomena, 188 (2012) 109-113.
DOI: 10.4028/www.scientific.net/ssp.188.109
Google Scholar
[13]
Zhang S., Zhang X., Zhao C., Li J., Song Y., Xie C., Research on an Mg–Zn alloy as a degradable biomaterial, Acta Biomater, 6 (2010) 626–640.
DOI: 10.1016/j.actbio.2009.06.028
Google Scholar
[14]
Zhang X.B., Yuan G.Y., Niu J.L., Fu P.H., Ding W.J., Microstructure, mechanical properties, biocorrosion behavior, and cytotoxicity of as-extruded Mg–Nd–Zn–Zr alloy with different extrusion ratios, J Mech Behav Biomed Mater, 9 (2012) 153–162.
DOI: 10.1016/j.jmbbm.2012.02.002
Google Scholar
[15]
Peuster M., Wohlsein P., Brugmann M., Ehlerding M., Seidler K., Fink C., A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal – results 6–18 months after implantation into New Zealand white rabbits, Heart, 86 (2001).
DOI: 10.1136/heart.86.5.563
Google Scholar
[16]
Blawert C., Dietzel W., Ghali E., Song G., Anodizing treatments for magnesium alloys and their effect on corrosion resistance in various environments, Adv Eng Mater, 8 (2006) 511–533.
DOI: 10.1002/adem.200500257
Google Scholar
[17]
Hornberger H., Virtanen S., Boccaccini A.R., Biomedical coatings on magnesium alloys–A review, Acta Biomaterialia, 8 (2012) 2442–2455.
DOI: 10.1016/j.actbio.2012.04.012
Google Scholar
[18]
Lorenz C., Brunner J.G., Kollmannsberger P., Jaafar L., Fabry B., Virtanen S., Effect of surface pre-treatments on biocompatibility of magnesium, Acta Biomater, 5 (2009) 2783–2789.
DOI: 10.1016/j.actbio.2009.04.018
Google Scholar
[19]
Antoniac I., Vranceanu M.D., Antoniac A., The influence of the magnesium powder used as reinforcement material on the properties of some collagen based composite biomaterials, JOAM, 15 (2013) 667-672.
Google Scholar
[20]
Witte F., Kaese V., Haferkamp H., Switzer E., Meyer-Lindenberg A., Wirth C., In vivo corrosion of four magnesium alloys and the associated bone response, Biomaterials, 26 (2005) 3557–3563.
DOI: 10.1016/j.biomaterials.2004.09.049
Google Scholar
[21]
Li N., Zheng Y., Novel Magnesium Alloys Developed for Biomedical Application: A Review, J. Mater. Sci. Technol., 29 (2013) 489-502.
Google Scholar
[22]
Trumbo P., Schlicker S., Yates A.A., Poos M., Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids, J Am Diet Assoc, 102 (2002) 1621–1630.
DOI: 10.1016/s0002-8223(02)90346-9
Google Scholar
[23]
Feser K., Kietzmann M., Baumer W., Krause C., Bach F.W., Effects of degradable Mg-Ca alloys on dendritic cell function, J. Biomater. Appl., 25 (2011) 685–697.
DOI: 10.1177/0885328209360424
Google Scholar
[24]
Li Z.J., Gu X.N., Lou S.Q., Zheng Y.F., The development of binary Mg–Ca alloys for use as biodegradable materials within bone, Biomaterials, 29 (2008) 1329–1344.
DOI: 10.1016/j.biomaterials.2007.12.021
Google Scholar
[25]
Thomann M., Krause C., Bormann D., von der Hoh N., Windhagen H., Meyer-Lindenberg A., Comparison of the resorbable magnesium alloys LAE442 und MgCa0. 8 concerning their mechanical properties, their progress of degradation and the bone-implant contact after 12 months implantation duration in a rabbit model, Materialwiss. Werkst., 40 (2009).
DOI: 10.1002/mawe.200800412
Google Scholar
[26]
Antoniac I.V., Miculescu M., Dinu M., Metallurgical characterization of some magnesium alloys for medical applications, Solid State Phenomena, 188 (2012) 109-113.
DOI: 10.4028/www.scientific.net/ssp.188.109
Google Scholar
[27]
Blajan A.I., Miculescu F., Ciuca I., Cotrut C., Semenescu A., Antoniac I., Effect of Calcium Content on the Microstructure and Degradation of Mg-Ca Binary Alloys potentially used as Orthopedic Biomaterials, KEM, 638 (2014) 104-108.
DOI: 10.4028/www.scientific.net/kem.638.104
Google Scholar
[28]
Mareci D., Bolat G., Izquierdo J., Crimu C., Munteanu C., Antoniac I., Souto R.M., Electrochemical characteristics of bioresorbable binary MgCa alloys in Ringer's solution: Revealing the impact of local pH distributions during in-vitro dissolution, Materials Science and Engineering: C, 60 (2016).
DOI: 10.1016/j.msec.2015.11.069
Google Scholar
[29]
Bita A.I., Stan G.E., Niculescu M., Ciuca I., Vasile E., Antoniac I., Adhesion evaluation of different bioceramic coatings on Mg–Ca alloys for biomedical applications, JAST 30 (2016) 1968-(1983).
DOI: 10.1080/01694243.2016.1171569
Google Scholar
[30]
Rau J.V., Antoniac I., Fosca M., De Bonis A., Blajan A.I., Cotrut C., Graziani V., Curcio M., Cricenti A., Niculescu M., Ortenzi M., Teghil R., Glass-ceramic coated Mg-Ca alloys for biomedical implant applications, Materials Science and Engineering: C, 64 (2016).
DOI: 10.1016/j.msec.2016.03.100
Google Scholar
[31]
Bita A.I., Antoniac A., Cotrut C., Vasile E., Ciuca I., Niculescu M., Antoniac I., In vitro Degradation and Corrosion Evaluation of Mg-Ca Alloys for Biomedical Applications, JOAM, 18 (2016) 394-398.
DOI: 10.1080/01694243.2016.1171569
Google Scholar