Acrylic Bone Cements: New Insight and Future Perspective

Article Preview

Abstract:

The history of acrylic bone cement comprise a long period of time, Sir John Charnley being considered the founder of modern artificial joint replacement, as he started to develop the cementing in the late 1950s. Acrylic bone cements (ACB) are polymer-ceramic composites based on polymethyl metacrylate (PMMA), widely used in orthopaedics as suture materials and fixation devices. The main features of these materials are: 1) biocompatibility and ability to support new bone growth (osteoconductive) and 2) bioactivity (ability to form a calcium phosphate layer on its surface). The main function of the cement is to serve as interfacial phase between the high modulus metallic implant and the bone, thereby assisting to transfer and distribute loads. During years of follow up, cemented prosthesis with acrylic bone cements (ABC) demonstrated a good primary fixation and load distribution between implant and bone, along with the advantage of fast recovery of the patient. However, several problems are still persisting, as the orthopedic acrylic bone cements have to meet several medical requirements, such as low values of maximum cure temperature in order to avoid thermal necrosis of the bone tissue during the setting time, appropriate setting time (so that cement does not cure too fast or too slowly) and high values of compressive strength in order to withstand the compressive loads involved by normal daily activities. Generally, the improvement mechanical properties can be realized in three directions: 1) by searching alternative material to PMMA acrylic bone cements; 2) chemical modification of PMMA; and 3) the reinforcement of PMMA by adding different bioactive particles, antimicrobials, vitamins. The aim of this rewiew is to explore the development of bone cements in the last decade, to highlight the role of bone cement additives with respect to mechanical properties and limitations of polymethylmethacrylate in orthopaedic surgery. The behavior of antibiotic-loaded bone cement is discussed, compared with other alternative additives including nanofillers, together with areas of research that are now open to explore new insights and applications of this well known biomaterial.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-49

Citation:

Online since:

July 2017

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Charnley, The bonding of prostheses to bone by cement, J Bone Joint Surg Br 46 (1964) 518-529.

DOI: 10.1302/0301-620x.46b3.518

Google Scholar

[2] M. C. Rusu, C. Ibanescu, I. C. Ichim, G. Riess, M. Popa, D. Rusu, M. Rusu, Radiopaque acrylic one cements with bromine containing monomer, J. Appl. Polymer Sci. 111(2009) 2493-2506.

DOI: 10.1002/app.29253

Google Scholar

[3] G. Lewis, Alternative acrylic bone cement formulations for cemented arthroplasties: present status, key issues, and future prospects, J. Biomed. Mater. Res. B: Appl. Biomater. 84 (2008) 301-319.

DOI: 10.1002/jbm.b.30873

Google Scholar

[4] H. Reza Seyyed Hosseinzadeh, M. Emami, F. Lahiji, A. S. Shahi, A. Masoudi, S. Emami, The Acrylic Bone Cement in Arthroplasty, in: Orthopedics, Physical Medicine and Rehabilitation, Edited by Plamen Kinov (2013)101-130.

DOI: 10.5772/53252

Google Scholar

[5] Po‑L. Lai, L‑H Chen, W‑J Chen, I‑M Chu, Chemical and physical properties of bone cement for vertebroplasty, Biomed. J. 36 (2013): 162-167.

DOI: 10.4103/2319-4170.112750

Google Scholar

[6] J. C. J. Webb, R. F. Spencer, The role of polymethylmethacrylate bone cement in modern orthopaedic surgery, J. Bone Joint Surg. [Br] 89(2007): 851-7.

DOI: 10.1302/0301-620x.89b7.19148

Google Scholar

[7] A. F. Boeckler, D. Morton, S. Poser, K.E. Dette, Release of dibenzoyl peroxide from polymethyl methacrylate denture base resins: An in vitro evaluation, Dent. Mater. 24( 2008)1602-1607.

DOI: 10.1016/j.dental.2008.03.019

Google Scholar

[8] N. Silikas, G. Eliades, D. Watts, Light intensity effects on resin-composite degree of conversion and shrinkage strain, Dent. Mater. 16(2000) 292-296.

DOI: 10.1016/s0109-5641(00)00020-8

Google Scholar

[9] C. P. Hagan, J. F. Orr, C. A. Mitchell, N. J. Dunne, Real time monitoring of the polymerization of PMMA bone cement using Raman Spectroscopy, J. Mater. Sci: Mater Med. 20(2009) 2427-2431.

DOI: 10.1007/s10856-009-3822-1

Google Scholar

[10] S. Cavalu, V. Simon, Microstructure and bioactivity of acrylic bone cements for prosthetic surgery, JOAM 8/ 4( 2006) 1520 – 1523.

Google Scholar

[11] K. -D. Kuehn, Acrylic bone cements: mechanical and physicalproperties, Orthop. Clin . Am. 36(2005) 29-39.

Google Scholar

[12] M. J. Provenzano, K. P.J. Murphy, L. H. Riley, Bone cements: Review of their physic-chemical and biochemical properties in percutaneous vertebroplasty, Am. J. Neuroradiol 25 (2004) 1286-1290.

Google Scholar

[13] S. Cavalu, S. Cîntă Pînzaru, N. Peica, G. Damian, W. Kiefer, Adsorption behavior of hyaluronidase onto silver nanoparticles and PMMA bone substitute, J. Optoelectronics and Advanced Materials, Vol. 9(3) (2007) 689-693.

Google Scholar

[14] S. I. Salih, J. K. Oleiwi, Q. A. Hamad, Investigation of fatigue and compression strength for the PMMA reinforced by different system for denture applications, Int. J. Biomed. Mat. Res. 3(1) (2015) 5-13.

Google Scholar

[15] M. K. Singh, T. Shokuhfar, J. J. de Almeida Gracio, A. C. Mendes de Sousa, J. M. Da Fonte Fereira, H. Garmestani, S. Ahzi, Hydroxyapatite modified with carbon nanotube-reinforced poly(methyl methacrylate): a novel nanocomposite material for biomedical applications, Adv. Funct. Mater. 9999 (2008).

DOI: 10.1002/adfm.200700888

Google Scholar

[16] S. M. Z. Khaled, P. A. Charpentier, A. S. Rizkalla, Physical and mechanical properties of PMMA bone cement reinforced with nano-sized titania fibers, J. Biomater. Appl . 25(2011 ) 515.

DOI: 10.1177/0885328209356944

Google Scholar

[17] R. K. Roeder, G. L. Converse, R. J. Kane, W. Yue, Hydroxyapatite-reinforced polymer biocomposites for synthetic bone substitutes, JOM, March (2008).

DOI: 10.1007/s11837-008-0030-2

Google Scholar

[18] S. A. Ben Hasan, M. M. Dimitrievic, A. Kojovic, D. B. Stojanovic, K. O. Duricic, R. M. J. Heinemann, R. Aleksic, The effect of the size and shape of alumina nanofillers on the mechanical behavior of PMMA matrix composites, J. Serb. Chem. Soc. 79/10 (2014).

DOI: 10.2298/jsc140121035b

Google Scholar

[19] M. Arora, E. K. S. Chan, S. Gupta, A. D. Diwan, Polymethylmethacrylate bone cements and additives: A review of the literature, World J. Orthop. 18; 4(2) (2013 ) 67-74.

Google Scholar

[20] H. W. Buchholz, R. A. Elson, K. Heinert, Antibiotic-loaded acrylic cement: current concepts, Clin. Orthop. Relat. Res. 190 (1984) 96-108.

DOI: 10.1097/00003086-198411000-00014

Google Scholar

[21] D. Neut, O. S. Kluin, J. Thompson, H. C van der Mei, H. J. Busscher, Gentamicin release from commercially-available gentamicin-loaded PMMA bone cements in a prosthesis-related interfacial gap model and their antibacterial efficacy, BMC Musculoskeletal Disorders (2010).

DOI: 10.1186/1471-2474-11-258

Google Scholar

[22] R. L. McLaren, A.C. McLaren, B. L. Vernon, Generic tobramycin elutes from bone cement faster than proprietary tobramycin, Clin. Orthop. Relat. Res. 466 (2008) 1372-1376.

DOI: 10.1007/s11999-008-0199-2

Google Scholar

[23] P.G. Hope, K.G. Kristinsson, P. Norman , R.A. Elson, Deep infection of cemented total hip arthroplasties caused by coagulase-negative staphylococci, J. Bone Joint Surg. [Br] 71-B(1989): 851-5.

DOI: 10.1302/0301-620x.71b5.2584258

Google Scholar

[24] J. C. J. Webb, R. F. Spencer, The role of polymethylmethacrylate bone cement in modern orthopaedic surgery, J. Bone Joint Surg. [Br]89-B(2007)851-7.

DOI: 10.1302/0301-620x.89b7.19148

Google Scholar

[25] S. Cavalu, V. Simon, F. Banica, In vitro study of collagen coating by elecrodeposition on acrylic bone cement with antimicrobial potential, Digest J. Nanomaterials and Biostructures, 6/1(2010) 89-97.

Google Scholar

[26] D. Monteiro, L. Gorup, A. Takamiya, A. Ruvollo-Filho, E. de Camargo, D. Barbosa, The growing importance of materi-als that prevent microbial adhesion: antimicrobial effect of medical devices containing silver, Int. J. Antimicrob. Agents 34(2009).

DOI: 10.1016/j.ijantimicag.2009.01.017

Google Scholar

[27] M. Bellantone, H. D. Williams, L. L. Hench, Broad spectrum bactericidal activity of Ag2O doped bioactive glass, Antimicrobial Agents and Chemotherapy, 46(6) (2002) 1940-(1945).

DOI: 10.1128/aac.46.6.1940-1945.2002

Google Scholar

[28] T. Ghaffari, F. Hamedirad, B. Ezzati, In vitro comparison of compressive and tensile strengths of acrylic resins reinforced by silver nanoparticles at 2% and 0. 2% concentrations, J. Dent. Res. Dent. Clin. Dent. Prospect 8(4)(2014) 204-209.

Google Scholar

[29] S. Cavalu, V. Simon, G. Goller, I. Akin, Bioactivity and antimicrobial properties of PMMA/Ag2O acrylic bone cements collagen coated, Digest J. Nanomaterials and Biostructures, vol. 6/2 (2011) 779-790.

DOI: 10.4028/www.scientific.net/kem.493-494.391

Google Scholar

[30] S. Tunc, M. F. Maintz, G. Steiner, L. Vasquez, M. T. Pham, R. Salzer, In situ conformational analysis of fibrinogen adsorbed on Si surfaces, Colloids Surf. B, 42 (2005) 219-225.

DOI: 10.1016/j.colsurfb.2005.03.004

Google Scholar