[1]
M.J. Morykwas, L.C. Argenta, E.I. Shelton-Brown, et al., Vacuum-assisted closure: a new method for wound control and treatment: animal studies and basic foundation, Ann Plast Surg. 38 (1997) 553–562.
DOI: 10.1097/00000637-199706000-00001
Google Scholar
[2]
M.Y. DeLange, R.A. Schasfoort, M.C. Obdeijn et al., Vacuum-assisted closure: indications and clinical experience, Eur J Plast Surg 23 (2000) 178–182.
Google Scholar
[3]
A.K. Deva, G.H. Buckland, E. Fisher et al., Topical negative pressure in wound management, Med J Aust 173 (2000) 128–131.
Google Scholar
[4]
S. Gupta, T. Cho, A literature review of negative pressure wound therapy, Ostomy Wound Manage 50 (2004) S2–S4.
Google Scholar
[5]
D.A. Mendonca, R. Papini, P.E. Price, Negative-pressure wound therapy: a snapshot of the evidence, Int Wound J. 3 (2006) 261–271.
DOI: 10.1111/j.1742-481x.2006.00266.x
Google Scholar
[6]
M.A. Peck, W.D. Clouse, M.W. Cox et al., The complete management of extremity vascular injury in a local population: a wartime report from the 332nd Expeditionary Medical Group/Air Force Theater Hospital, Balad Air Base, Iraq. J Vasc Surg. 45 (2007).
DOI: 10.1016/j.jvs.2007.02.003
Google Scholar
[7]
A.J. DeFranzo, L.C. Argenta, M.W. Marks et al., The use of vacuum-assisted closure therapy for the treatment of lower-extremity wounds with exposed bone, Plast Reconstr Surg. 108 (2001) 1184–1191.
DOI: 10.1097/00006534-200110000-00013
Google Scholar
[8]
B.T. Dedmond, B. Kortesis, K. Punger et al., The use of negative-pressure wound therapy (NPWT) in the temporary treatment of soft-tissue injuries associated with high-energy open tibial shaft fractures, J Orthop Trauma 21 (2007) 11–17.
DOI: 10.1097/bot.0b013e31802cbc54
Google Scholar
[9]
D. Herscovici, R.W. Sanders, J.M. Scaduto et al. Vacuum-assisted wound closure (VAC therapy) for the management of patients with high-energy soft tissue injuries, J Orthop Trauma 17 (2003) 683–688.
DOI: 10.1097/00005131-200311000-00004
Google Scholar
[10]
B.E. Leininger, T.E. Rasmussen, D.L. Smith et al., Experience with wound VAC and delayed primary closure of contaminated soft tissue injuries in Iraq, J Trauma 61 (2006) 1207–1211.
DOI: 10.1097/01.ta.0000241150.15342.da
Google Scholar
[11]
J.C. Page, B. Newswander, D.C. Schwenke et al., Retrospective analysis of negative pressure wound therapy in open foot wounds with significant soft tissue defects, Adv Skin Wound Care 17 (2004) 354–364.
DOI: 10.1097/00129334-200409000-00015
Google Scholar
[12]
L.X. Webb New techniques in wound management: vacuum-assisted wound closure, J Am Acad Orthop Surg 10 (2002) 303–311.
Google Scholar
[13]
E. Krug, L. Berg, C. Lee, D. Hudson, H. Birke-Sorensen, M. Depoorter et al., Evidence-based recommendations for the use of Negative Pressure Wound Therapy in traumatic wounds and reconstructive surgery: steps towards an international consensus, Injury 42 (2011).
DOI: 10.1016/s0020-1383(11)00041-6
Google Scholar
[14]
M.J. Morykwas, L.C. Argenta, E.I. Shelton-Brown et al., Vacuum-assisted closure: a new method for wound control and treatment: animal studies and basic foundation, Ann Plast Surg. 38 (1997) 553–562.
DOI: 10.1097/00000637-199706000-00001
Google Scholar
[15]
M.Y. DeLange, R.A. Schasfoort, M.C. Obdeijn et al., Vacuum-assisted closure: indications and clinical experience, Eur J Plast Surg 23 (2000) 178–182.
Google Scholar
[16]
N. Singh, D. G. Armstrong, B. A. Lipsky, Preventing Foot Ulcers in Patients with Diabetes, Journal of the American Medical Association 2 (2005) 217-228.
Google Scholar
[17]
C. A. Abbott, A. P. Garrow, A. L. Carrington, J. Morris, E. R. Van Ross and A. J. Boulton, Foot Ulcer Risk Is Lower in South-Asian and African-Caribbean Compared with European Diabetic Patients in the UK: The North- West Diabetes Foot Care Study, Diabetes Care 8 (2005).
DOI: 10.2337/diacare.28.8.1869
Google Scholar
[18]
S. D. Ramsey, K. Newton, D. Blough et al., Incidence, Outcomes, and Cost of Foot Ulcers in Patients with Diabetes, Diabetes Care 3 (1999) 382-387.
DOI: 10.2337/diacare.22.3.382
Google Scholar
[19]
G. Ragnarson Tennvall, J. Apelqvist, Health-Economic Consequences of Diabetic Foot Lesions, Clinical Infectious Diseases 2 (2004) 132-139.
DOI: 10.1086/383275
Google Scholar
[20]
A. J. Boulton, Diabetes/Metabolism Research and Reviews, The Diabetic Foot: A Global View 1 (2000) 2-5.
Google Scholar
[21]
R. G. Frykberg, Diabetic Foot Ulcers: Current Concepts, Journal of Foot and Ankle Surgery 5 (1998) 440-446.
DOI: 10.1016/s1067-2516(98)80055-0
Google Scholar
[22]
W. Fleischman, Lang, L. Klintzl Vacuum assisted wound closure after dermatofasciotomy of the lower extremity, Unfallchirurg 99 (1996) 283.
Google Scholar
[23]
D. Herscovici, R.W. Sanders, J.M. Scaduto, et al., Vacuum- assisted wound closure(VAC therapy) for management of patients with high-energy soft tissue injuries, J Orthop Trauma 17 (2003) 683-688.
DOI: 10.1097/00005131-200311000-00004
Google Scholar
[24]
A.K. Deva, G.H. Buckland, E. Fisher et al., Topical negative pressure in wound management, Med J Aust 173 (2000) 128–131.
Google Scholar
[25]
P. Botez, P. Sirbu, L. Simion, F. Munteanu, I. Antoniac, Application of a biphasic macroporous synthetic bone substitutes CERAFORM®: clinical and histological results, European Journal of Orthopaedic Surgery and Traumatology, 19( 6), (2009).
DOI: 10.1007/s00590-009-0445-7
Google Scholar
[26]
I. Antoniac, M.D. Vranceanu, A. Antoniac, The influence of the magnesium powder used as reinforcement material on the properties of some collagen based composite biomaterials, Journal Of Optoelectronics And Advanced Materials, 15( 7-8), (2013).
Google Scholar
[27]
J.G. Meara, L. Guo, J.D. Smith, et al., Vacuum-assisted closure in the treatment of degloving injuries, Ann Plast Surg, 42 (1999) 589–594.
DOI: 10.1097/00000637-199906000-00002
Google Scholar
[28]
M.A. Peck, W.D. Clouse, M.W. Cox et al., The complete management of extremity vascular injury in a local population: a wartime report from the 332nd Expeditionary Medical Group/Air Force Theater Hospital, Balad Air Base, Iraq. J Vasc Surg. 45 (2007).
DOI: 10.1016/j.jvs.2007.02.003
Google Scholar
[29]
M.M. Hanasono, R.J. Skorack, Securing skin grafts to microvascular free flaps using the vacuum-assisted closure (VAC) device, Ann Plast Surg 58 (2007) 573–6.
DOI: 10.1097/01.sap.0000237638.93453.66
Google Scholar
[30]
J.A. Nelson, E.M. Kim, J.M. Serletti, L.C. Wu, A novel technique for lower extremity limb salvage: the vastus lateralis muscle flap with concurrent use of the vacuum-assisted closure device, J Reconstr Microsurg 26 (2010) 427–31.
DOI: 10.1055/s-0030-1251561
Google Scholar
[31]
I. Antoniac, Biodegradability of some collagen sponges reinforced with different bioceramics, Key engineering materials, 32 (2014) 179-184.
DOI: 10.4028/www.scientific.net/kem.587.179
Google Scholar
[32]
M.D. Vranceanu, I. Antoniac, F. Miculescu, R. Saban, The influence of the ceramic phase on the porosity of some biocomposites with collagen matrix used as bone substitutes, Journal of Optoelectronics and Advanced Biomaterials, 14(7-8), (2012).
Google Scholar
[33]
T. Petreus, B.A. Stoica, O. Petreus, A. Goriuc, C.E. Cotrut, I. Antoniac, L. Barbu-Tudoran, Preparation and cytocompatibility evaluation for hydrosoluble phosphorous acid-derivatized cellulose as tissue engineering scaffold material, Journal of Materials Science: Materials in Medicine, 25(4), (2014).
DOI: 10.1007/s10856-014-5146-z
Google Scholar
[34]
I. Antoniac, Biologically responsive biomaterials for tissue engineering, Springer, ISBN 978-1-4614-4327-8 (2013) 24-64.
Google Scholar
[35]
I. Cristescu, D. Zamfirescu, D. Vilcioiu, et al., Experimental evaluation on rat model of different bioresorbable materials potentially used as orthopedic biomaterials. Key Engineering Materials, 614 (2014) 196-199.
DOI: 10.4028/www.scientific.net/kem.614.196
Google Scholar
[36]
F. Miculescu, D. Bojin, L.T. Ciocan, I. Antoniac, M. Miculescu, N. Miculescu, Experimental researches on biomaterial-tissue interface interactions, Journal of Optoelectronics and Advanced Materials 9(11), (2007) 3303 – 3306.
DOI: 10.4028/www.scientific.net/kem.638.14
Google Scholar