Fractographic Evaluation of the Metallic Materials for Medical Applications

Article Preview

Abstract:

The manner of studying of the fracture modes could be done through fractography. Fractography is the study of fracture surface morphologies and it gives an insight into damage and failure mechanisms, underpinning the development of physically-based failure criteria. In composites research it provides a crucial link between predictive models and experimental observations. Fractographic methods are routinely used to determine the cause of failure in all engineering structures, especially in product failure and the practice of forensic engineering or failure analysis. In material science research, fractography is used to develop and evaluate theoretical models of crack growth behavior. One of the aims of fractographic examination is to determine the cause of failure by studying the characteristics of a fracture surface. Different types of crack growth produce characteristic features on the surface, which can be used to help identify the failure mode. The overall pattern of cracking can be more important than a single crack, however, especially in the case of brittle behavior materials. Initial fractographic examination is commonly carried out on a macro scale utilizing low power optical microscopy and oblique lighting techniques to identify the extent of cracking, possible modes and likely origins. When it is needed to identify the nature of failure, an analysis at high magnification is required and scanning electron microscopy (SEM) seems to be the best choice. The problem of fracture behavior of biometallic materials is a real one, being well and repeatedly presented in literature. Variations in alloy compositions can lead to subtle differences in mechanical, physical, or electrochemical properties. However, these differences are minor compared with the potential variability caused by differences in fabrication methodology, heat treatment, cold working, and surface finishing, where surface treatments are particularly important for corrosion and wear properties. The aim of this paper, therefore, is to summarize the different types of metals and alloys used as biomaterials, the corrosion of metals in the human body, and different failure damages of metallic implants.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

62-74

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Park J.B., Bronzino J.D., Biomaterials: Principles and Applications, Publisher CRC Press, (2003), 1-22.

Google Scholar

[2] Niculescu M., Laptoiu D., Miculescu F., Antoniac I., Metal allergy and other adverse reactions in patients with total hip replacement, Advanced Materials Research, 1114 (2015), 283-287.

DOI: 10.4028/www.scientific.net/amr.1114.283

Google Scholar

[3] Ghiban B., Metallic Biomaterials, Publisher Printech, Bucharest (1999), 1-40.

Google Scholar

[4] Collings E.G., Boyer R., Welsch G., Materials properties handbook. Titanium alloys, ASM International (1994), 483-609.

Google Scholar

[5] Niculescu M., Antoniac I., Blajan A., Metallic biomaterials processing technologies in order to obtain a new design for a hip prosthesis femoral component, Solid State Phenomena, 216 (2016), 239-242.

DOI: 10.4028/www.scientific.net/ssp.216.239

Google Scholar

[6] Miculescu F., Bojin D., Ciocan L.T., Antoniac I., Miculescu M., Miculescu N., Experimental researches on biomaterial-tissue interface interactions, JOAM, 9: 11 (2007), 3303–3306.

DOI: 10.4028/www.scientific.net/kem.638.14

Google Scholar

[7] Ghiban B., Mechanical and corrosion behaviour of some devices for ostheosinthesis, Advanced Materials Research, 23 (2007), 257-260.

DOI: 10.4028/www.scientific.net/amr.23.257

Google Scholar

[8] Mihaela M.A., Brandusa G., Nicolae G., Iulian A., Corrosion behaviour in Ringer solution of Ti-Mo alloys used for orthopaedic biomedical applications, Solid State Phenomena, 188 (2012), 98-101.

DOI: 10.4028/www.scientific.net/ssp.188.98

Google Scholar

[9] Reclaru L., Unger R.E., Kirkpatrick C.J., Susz C., Eschler P.Y., Zuercher M.H., Antoniac I., Lüthy H., Ni-Cr based dental alloys; Ni release, corrosion and biological evaluation, Mater Sci Eng C Mater Biol Appl, 32: 6 (2012), 1452-1460.

DOI: 10.1016/j.msec.2012.04.025

Google Scholar

[10] Togan V., Ionita G., Antoniac I., Corrosion Behavior of Ti6Al4V Coated with SiOx by PECVD Technology, KEM, 583 (2014), 22-27.

DOI: 10.4028/www.scientific.net/kem.583.22

Google Scholar

[11] Antoniac I., Biologically responsive biomaterials for tissue engineering, Publisher Springer, New York (2013), 107-137.

Google Scholar

[12] Rau J., Antoniac I., Cama G., Ravaglioli A., Bioactive Materials for Bone Tissue Engineering, BioMed Research International, vol. 2016, Article ID 3741428, (2016), 1-3.

DOI: 10.1155/2016/3741428

Google Scholar

[13] Antoniac I., Miculescu M., Dinu M., Metallurgical characterization of some magnesium alloys for medical applications, Solid State Phenomena, 188 (2012), 109-113.

DOI: 10.4028/www.scientific.net/ssp.188.109

Google Scholar

[14] Rau J., Antoniac I., Fosca M., et al., Glass-ceramic coated Mg-Ca alloys for biomedical implant applications, Mater Sci Eng C Mater Biol Appl, 64 (2016), 362-369.

DOI: 10.1016/j.msec.2016.03.100

Google Scholar

[15] Crimu C., Istrate B., Munteanu C., Antoniac I., Matei M., Earar K., XRD and Microstructural Analyses on Biodegradable Mg Alloys, KEM, 638 (2015), 79-84.

DOI: 10.4028/www.scientific.net/kem.638.79

Google Scholar

[16] Bita A., Antoniac A., Cotrut C., Vasile E., Ciuca I., Niculescu M., Antoniac I., In vitro Degradation and Corrosion Evaluation of Mg-Ca Alloys for Biomedical Applications, JOAM, 18: 3-4 (2016), 394-398.

DOI: 10.1080/01694243.2016.1171569

Google Scholar

[17] Mareci D., Bolat G., Izquierdo J., Crimu C., Munteanu C., Antoniac I., Souto R.M., Electrochemical characteristics of bioresorbable binary MgCa alloys in Ringer's Solution: Revealing the impact of local pH distributions during in-vitro dissolution, Mater Sci Eng C Mater Biol Appl, 60 (2016).

DOI: 10.1016/j.msec.2015.11.069

Google Scholar

[18] Antoniac I., Matei E., Munteanu C., Advanced eco-technologies and materials for environmental and health application, EEMJ, 15: 5, (2016), 953-954.

DOI: 10.30638/eemj.2016.103

Google Scholar

[19] Nicoara M., Raduta A., Parthiban R., Locovei C., Eckert J., Stoica M., Low Young's modulus Ti-based porous bulk glassy alloy without cytotoxic elements, Acta Biomaterialia 36 (2016) 323–331.

DOI: 10.1016/j.actbio.2016.03.020

Google Scholar

[20] Nicoara M., Locovei C., Șerban V.A., Parthiban R., Calin M., Stoica M., New Cu-Free Ti-Based Composites with Residual Amorphous Matrix, Materials, 9: 5 (2016), 1-14.

DOI: 10.3390/ma9050331

Google Scholar

[21] Nicoara M., Raduta A., Locovei C., Buzdugan D., Stoica M., About thermostability of biocompatible Ti–Zr–Ta–Si amorphous alloys, J Therm Anal Calorim 127: 1 (2017), 107-113.

DOI: 10.1007/s10973-016-5532-5

Google Scholar

[22] Raduta A., Nicoara M., Locovei C., Eckert J., Stoica M., Ti-based bulk glassy composites obtained by replacement of Ni with Ga, Intermetallics, 69 (2016), 28–34.

DOI: 10.1016/j.intermet.2015.10.013

Google Scholar

[23] Teoh S.H., Fatigue of biomaterials: a review, International Journal of Fatigue, 22: 10 (2000), 825–837.

DOI: 10.1016/s0142-1123(00)00052-9

Google Scholar

[24] ASTM F561–05a (2005). Practice for retrieval and analysis of implanted medical devices, and associated tissues and fluids, ASTM Annual Book of Standards, Vol. 13. 01, (2008).

Google Scholar

[25] Edwin M.M., Edward V.A., Peter J.S., Neal J.S., Exchange Nailing for Failure of Initially Rodded Tibial Shaft Fractures, J. Orthop., 24: 8 (2001), 757-762.

DOI: 10.3928/0147-7447-20010801-17

Google Scholar

[26] Ionescu R., Cristescu I., Dinu M., Saban R., Antoniac I., Vilcioiu D., Clinical, biomechanical and biomaterials approach in the case of fracture repair using different systems type plate-screw, KEM, 583 (2014), 150-154.

DOI: 10.4028/www.scientific.net/kem.583.150

Google Scholar

[27] Momberger N., Stevens P., Smith J., Intramedullary nailing of femoral fractures in adolescents, J Pediatr Orthop, 20: 4 (2000), 482-484.

DOI: 10.1097/01241398-200007000-00011

Google Scholar

[28] Bane M., Miculescu F., Blajan A., Dinu M., Antoniac I., Failure analysis of some retrieved orthopedic implants based on materials characterization, Solid State Phenomena, 188 (2012), 114-117.

DOI: 10.4028/www.scientific.net/ssp.188.114

Google Scholar

[29] Azevedo C.R.F., Hippert Jr.E., Failure Analysis of Surgical Implants in Brazil, J. Eng. Failure Analys, 9 (2002), 621-633.

DOI: 10.1016/s1350-6307(02)00026-2

Google Scholar

[30] Wall E.J., Jain V., Vora V., Mehlman C.T., Crawford A.H., Complications of titanium and stainless steel elastic nail fixation of pediatric femoral fractures, J Bone Joint Surg. Am, 90: 6 (2008), 1305 -1313.

DOI: 10.2106/jbjs.g.00328

Google Scholar

[31] Atasiei T., Antoniac I., Laptoiu D., Failure causes in hip resurfacing arthroplasty – retrieval analysis, International Journal of Nano and Biomaterials, 3: 4 (2011), 367-381.

DOI: 10.1504/ijnbm.2011.045882

Google Scholar

[32] Goodwin R., Mahar A.T., Oka R., Steinman S., Newton P.O., Biomechanical evaluation of retrograde intramedullary stabilization for femoral fractures: the effect of fracture level, J Pediatr Orthop, 27: 8 (2007), 873-876.

DOI: 10.1097/bpo.0b013e31815b12df

Google Scholar

[33] Ionescu R., Mardare M., Dorobantu A., Vermesan S., Marinescu E., Saban R., Antoniac I., Ciocan D.N., Ceausu M., Correlation Between Materials, Design and Clinical Issues in the Case of Associated Use of Different Stainless Steels as Implant Materials, KEM, 583 (2014).

DOI: 10.4028/www.scientific.net/kem.583.41

Google Scholar

[34] Christian G., Stefanie S., et al., Implant Failure of the Gamma Nail, Injury, Int. J. Care Injured, 30 (1999), 91-99.

Google Scholar

[35] Antoniac I., Laptoiu D., Miculescu F., Istrate R., Trisca-Rusu C., Microscopy analysis of total knee prosthesis failure caused by polyethylene wear, ECM, 16: S1 (2008), 54.

Google Scholar

[36] Cristescu I., Antoniac I., Vilcioiu D., Safta F., Analysis of centromedullary nailing with implant failure, KEM, 638 (2015), 130-134.

DOI: 10.4028/www.scientific.net/kem.638.130

Google Scholar

[37] Laurian T., Tudor A., Antoniac I., Miculescu F., A micro-scale abrasion test to study the influence of counterface roughness on the wear resistance of UHMWPE, JOAM, 9: 11 (2007), 3383 – 3388.

Google Scholar

[38] Winquist R.A., Hansen S.T. Jr., Clawson D.K., Closed intramedullary nailing of femoral fractures. A report of five hundred and twenty cases, J Bone Joint Surg Am, 83-A12 (2001), (1912).

DOI: 10.2106/00004623-200112000-00021

Google Scholar

[39] Marinescu R., Antoniac I., Laptoiu D., Antoniac A., Grecu D., Complications related to biocomposite screw fixation in ACL reconstruction based on clinical experience and retrieval analysis, Materiale Plastice, 52: 3 (2015), 340-344.

DOI: 10.1007/978-3-319-09230-0_43-1

Google Scholar

[40] Cirstoiu M., Antoniac I., Ples L., Bratila E., Munteanu O., Adverse Reactions Due to Use of Two Intrauterine Devices with Different Action Mechanism in a Rare Clinical Case, Materiale Plastice, 53: 4 (2016), 666-669.

Google Scholar

[41] Antoniac I., Bratila E., Munteanu O., Cirstoiu M., Design and materials influence on clinical functionality of the cerclage pessary use in prevention of premature birth, Materiale Plastice, 53: 4 (2016), 612-616.

Google Scholar

[42] Antoniac I., Sinescu C., Antoniac A., Adhesion aspects in biomaterials and medical devices, JAST, 30: 16 (2016), 1-5.

Google Scholar

[43] Antoniac I., Burcea M., Ionescu R., Balta F., IOL's Opacification: A complex analysis based on the clinical aspects, biomaterials used and surface characterization of explanted IOL's, Materiale Plastice, 52: 1 (2015), 109-112.

Google Scholar