[1]
Park J.B., Bronzino J.D., Biomaterials: Principles and Applications, Publisher CRC Press, (2003), 1-22.
Google Scholar
[2]
Niculescu M., Laptoiu D., Miculescu F., Antoniac I., Metal allergy and other adverse reactions in patients with total hip replacement, Advanced Materials Research, 1114 (2015), 283-287.
DOI: 10.4028/www.scientific.net/amr.1114.283
Google Scholar
[3]
Ghiban B., Metallic Biomaterials, Publisher Printech, Bucharest (1999), 1-40.
Google Scholar
[4]
Collings E.G., Boyer R., Welsch G., Materials properties handbook. Titanium alloys, ASM International (1994), 483-609.
Google Scholar
[5]
Niculescu M., Antoniac I., Blajan A., Metallic biomaterials processing technologies in order to obtain a new design for a hip prosthesis femoral component, Solid State Phenomena, 216 (2016), 239-242.
DOI: 10.4028/www.scientific.net/ssp.216.239
Google Scholar
[6]
Miculescu F., Bojin D., Ciocan L.T., Antoniac I., Miculescu M., Miculescu N., Experimental researches on biomaterial-tissue interface interactions, JOAM, 9: 11 (2007), 3303–3306.
DOI: 10.4028/www.scientific.net/kem.638.14
Google Scholar
[7]
Ghiban B., Mechanical and corrosion behaviour of some devices for ostheosinthesis, Advanced Materials Research, 23 (2007), 257-260.
DOI: 10.4028/www.scientific.net/amr.23.257
Google Scholar
[8]
Mihaela M.A., Brandusa G., Nicolae G., Iulian A., Corrosion behaviour in Ringer solution of Ti-Mo alloys used for orthopaedic biomedical applications, Solid State Phenomena, 188 (2012), 98-101.
DOI: 10.4028/www.scientific.net/ssp.188.98
Google Scholar
[9]
Reclaru L., Unger R.E., Kirkpatrick C.J., Susz C., Eschler P.Y., Zuercher M.H., Antoniac I., Lüthy H., Ni-Cr based dental alloys; Ni release, corrosion and biological evaluation, Mater Sci Eng C Mater Biol Appl, 32: 6 (2012), 1452-1460.
DOI: 10.1016/j.msec.2012.04.025
Google Scholar
[10]
Togan V., Ionita G., Antoniac I., Corrosion Behavior of Ti6Al4V Coated with SiOx by PECVD Technology, KEM, 583 (2014), 22-27.
DOI: 10.4028/www.scientific.net/kem.583.22
Google Scholar
[11]
Antoniac I., Biologically responsive biomaterials for tissue engineering, Publisher Springer, New York (2013), 107-137.
Google Scholar
[12]
Rau J., Antoniac I., Cama G., Ravaglioli A., Bioactive Materials for Bone Tissue Engineering, BioMed Research International, vol. 2016, Article ID 3741428, (2016), 1-3.
DOI: 10.1155/2016/3741428
Google Scholar
[13]
Antoniac I., Miculescu M., Dinu M., Metallurgical characterization of some magnesium alloys for medical applications, Solid State Phenomena, 188 (2012), 109-113.
DOI: 10.4028/www.scientific.net/ssp.188.109
Google Scholar
[14]
Rau J., Antoniac I., Fosca M., et al., Glass-ceramic coated Mg-Ca alloys for biomedical implant applications, Mater Sci Eng C Mater Biol Appl, 64 (2016), 362-369.
DOI: 10.1016/j.msec.2016.03.100
Google Scholar
[15]
Crimu C., Istrate B., Munteanu C., Antoniac I., Matei M., Earar K., XRD and Microstructural Analyses on Biodegradable Mg Alloys, KEM, 638 (2015), 79-84.
DOI: 10.4028/www.scientific.net/kem.638.79
Google Scholar
[16]
Bita A., Antoniac A., Cotrut C., Vasile E., Ciuca I., Niculescu M., Antoniac I., In vitro Degradation and Corrosion Evaluation of Mg-Ca Alloys for Biomedical Applications, JOAM, 18: 3-4 (2016), 394-398.
DOI: 10.1080/01694243.2016.1171569
Google Scholar
[17]
Mareci D., Bolat G., Izquierdo J., Crimu C., Munteanu C., Antoniac I., Souto R.M., Electrochemical characteristics of bioresorbable binary MgCa alloys in Ringer's Solution: Revealing the impact of local pH distributions during in-vitro dissolution, Mater Sci Eng C Mater Biol Appl, 60 (2016).
DOI: 10.1016/j.msec.2015.11.069
Google Scholar
[18]
Antoniac I., Matei E., Munteanu C., Advanced eco-technologies and materials for environmental and health application, EEMJ, 15: 5, (2016), 953-954.
DOI: 10.30638/eemj.2016.103
Google Scholar
[19]
Nicoara M., Raduta A., Parthiban R., Locovei C., Eckert J., Stoica M., Low Young's modulus Ti-based porous bulk glassy alloy without cytotoxic elements, Acta Biomaterialia 36 (2016) 323–331.
DOI: 10.1016/j.actbio.2016.03.020
Google Scholar
[20]
Nicoara M., Locovei C., Șerban V.A., Parthiban R., Calin M., Stoica M., New Cu-Free Ti-Based Composites with Residual Amorphous Matrix, Materials, 9: 5 (2016), 1-14.
DOI: 10.3390/ma9050331
Google Scholar
[21]
Nicoara M., Raduta A., Locovei C., Buzdugan D., Stoica M., About thermostability of biocompatible Ti–Zr–Ta–Si amorphous alloys, J Therm Anal Calorim 127: 1 (2017), 107-113.
DOI: 10.1007/s10973-016-5532-5
Google Scholar
[22]
Raduta A., Nicoara M., Locovei C., Eckert J., Stoica M., Ti-based bulk glassy composites obtained by replacement of Ni with Ga, Intermetallics, 69 (2016), 28–34.
DOI: 10.1016/j.intermet.2015.10.013
Google Scholar
[23]
Teoh S.H., Fatigue of biomaterials: a review, International Journal of Fatigue, 22: 10 (2000), 825–837.
DOI: 10.1016/s0142-1123(00)00052-9
Google Scholar
[24]
ASTM F561–05a (2005). Practice for retrieval and analysis of implanted medical devices, and associated tissues and fluids, ASTM Annual Book of Standards, Vol. 13. 01, (2008).
Google Scholar
[25]
Edwin M.M., Edward V.A., Peter J.S., Neal J.S., Exchange Nailing for Failure of Initially Rodded Tibial Shaft Fractures, J. Orthop., 24: 8 (2001), 757-762.
DOI: 10.3928/0147-7447-20010801-17
Google Scholar
[26]
Ionescu R., Cristescu I., Dinu M., Saban R., Antoniac I., Vilcioiu D., Clinical, biomechanical and biomaterials approach in the case of fracture repair using different systems type plate-screw, KEM, 583 (2014), 150-154.
DOI: 10.4028/www.scientific.net/kem.583.150
Google Scholar
[27]
Momberger N., Stevens P., Smith J., Intramedullary nailing of femoral fractures in adolescents, J Pediatr Orthop, 20: 4 (2000), 482-484.
DOI: 10.1097/01241398-200007000-00011
Google Scholar
[28]
Bane M., Miculescu F., Blajan A., Dinu M., Antoniac I., Failure analysis of some retrieved orthopedic implants based on materials characterization, Solid State Phenomena, 188 (2012), 114-117.
DOI: 10.4028/www.scientific.net/ssp.188.114
Google Scholar
[29]
Azevedo C.R.F., Hippert Jr.E., Failure Analysis of Surgical Implants in Brazil, J. Eng. Failure Analys, 9 (2002), 621-633.
DOI: 10.1016/s1350-6307(02)00026-2
Google Scholar
[30]
Wall E.J., Jain V., Vora V., Mehlman C.T., Crawford A.H., Complications of titanium and stainless steel elastic nail fixation of pediatric femoral fractures, J Bone Joint Surg. Am, 90: 6 (2008), 1305 -1313.
DOI: 10.2106/jbjs.g.00328
Google Scholar
[31]
Atasiei T., Antoniac I., Laptoiu D., Failure causes in hip resurfacing arthroplasty – retrieval analysis, International Journal of Nano and Biomaterials, 3: 4 (2011), 367-381.
DOI: 10.1504/ijnbm.2011.045882
Google Scholar
[32]
Goodwin R., Mahar A.T., Oka R., Steinman S., Newton P.O., Biomechanical evaluation of retrograde intramedullary stabilization for femoral fractures: the effect of fracture level, J Pediatr Orthop, 27: 8 (2007), 873-876.
DOI: 10.1097/bpo.0b013e31815b12df
Google Scholar
[33]
Ionescu R., Mardare M., Dorobantu A., Vermesan S., Marinescu E., Saban R., Antoniac I., Ciocan D.N., Ceausu M., Correlation Between Materials, Design and Clinical Issues in the Case of Associated Use of Different Stainless Steels as Implant Materials, KEM, 583 (2014).
DOI: 10.4028/www.scientific.net/kem.583.41
Google Scholar
[34]
Christian G., Stefanie S., et al., Implant Failure of the Gamma Nail, Injury, Int. J. Care Injured, 30 (1999), 91-99.
Google Scholar
[35]
Antoniac I., Laptoiu D., Miculescu F., Istrate R., Trisca-Rusu C., Microscopy analysis of total knee prosthesis failure caused by polyethylene wear, ECM, 16: S1 (2008), 54.
Google Scholar
[36]
Cristescu I., Antoniac I., Vilcioiu D., Safta F., Analysis of centromedullary nailing with implant failure, KEM, 638 (2015), 130-134.
DOI: 10.4028/www.scientific.net/kem.638.130
Google Scholar
[37]
Laurian T., Tudor A., Antoniac I., Miculescu F., A micro-scale abrasion test to study the influence of counterface roughness on the wear resistance of UHMWPE, JOAM, 9: 11 (2007), 3383 – 3388.
Google Scholar
[38]
Winquist R.A., Hansen S.T. Jr., Clawson D.K., Closed intramedullary nailing of femoral fractures. A report of five hundred and twenty cases, J Bone Joint Surg Am, 83-A12 (2001), (1912).
DOI: 10.2106/00004623-200112000-00021
Google Scholar
[39]
Marinescu R., Antoniac I., Laptoiu D., Antoniac A., Grecu D., Complications related to biocomposite screw fixation in ACL reconstruction based on clinical experience and retrieval analysis, Materiale Plastice, 52: 3 (2015), 340-344.
DOI: 10.1007/978-3-319-09230-0_43-1
Google Scholar
[40]
Cirstoiu M., Antoniac I., Ples L., Bratila E., Munteanu O., Adverse Reactions Due to Use of Two Intrauterine Devices with Different Action Mechanism in a Rare Clinical Case, Materiale Plastice, 53: 4 (2016), 666-669.
Google Scholar
[41]
Antoniac I., Bratila E., Munteanu O., Cirstoiu M., Design and materials influence on clinical functionality of the cerclage pessary use in prevention of premature birth, Materiale Plastice, 53: 4 (2016), 612-616.
Google Scholar
[42]
Antoniac I., Sinescu C., Antoniac A., Adhesion aspects in biomaterials and medical devices, JAST, 30: 16 (2016), 1-5.
Google Scholar
[43]
Antoniac I., Burcea M., Ionescu R., Balta F., IOL's Opacification: A complex analysis based on the clinical aspects, biomaterials used and surface characterization of explanted IOL's, Materiale Plastice, 52: 1 (2015), 109-112.
Google Scholar