Current Strategies and Advances Materials for the Treatment of Injured Meniscus

Article Preview

Abstract:

The lack of meniscal tissue increases the risk of early cartilage degeneration. Classic treatment includes suturing and partial menscectomies, total meniscectomies being abandoned. Modern treatments are based on the implantation of special scaffolds that replace some of the lost meniscal tissue. This paper reviews the basic principles of modern treatment of the menisci and it includes a retrospective study, in which a total of 10 patients (7 men and 3 women, mean age: 28.28 (21-38)) were enrolled. All patients had previous surgery and were subjected to arthroscopic treatment with a biodegradable scaffold (Actifit®). They received KOOS (Knee Injury and Ostheoarthritis Outcome Score), Lysholm and Tegner score. The Tegner score was not very useful in determining the success or failure of the surgery. The Lysholm and KOOS score results improved at the 1-year follow-up. The results of the scores that the patients filled out, showed an improvement in their preoperatively knee related problems. The Actifit® scaffold is safe and effective in treating meniscal defects.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

26-38

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Bland-Sutton J., The Ligaments of the Knee Joint, Ligaments Their Nature and Morphology, 2nd ed, H.K. Lewis, London, (1897).

Google Scholar

[2] Schoenfeld A. J., Landis W. J., Kay D. B., Tissue-engineered meniscal constructs. The American Journal of Orthopedics, 36 (2007) 614-620.

Google Scholar

[3] Celeste S., Hirschmann M. T., Antinnolfi P., Martin I. and Peretti G. M., Meniscus repair and regeneration: review on current methods and research potential, European Cells and Materials, 26 (2013) 150-170.

DOI: 10.22203/ecm.v026a11

Google Scholar

[4] Fox A. J. S., Bedi A. and Rodeo S. A., The basic science of human knee menisci, Sports Health, 4 (2012), 340-351.

DOI: 10.1177/1941738111429419

Google Scholar

[5] Makris E. A., Hadidi P., Athannasiou K. A., The knee meniscus: structure-function, pathophysiology, current repair techniques and prospects for regeneration, Biomaterials, 30 (2011) 7411-7431.

DOI: 10.1016/j.biomaterials.2011.06.037

Google Scholar

[6] Ateshian G.A., Mow V.C., Friction, Lubrication, and Wear of Articular Cartilage and Diarthroidial Joints, in: Mow V.C., Huiskes R. (Eds) Basic Orthopaedic Biomechanics & Mechano-biology, 3rd ed., Lippincott Williams & Wilkins, Philadelphia, (2005).

DOI: 10.1186/1475-925x-4-28

Google Scholar

[7] Dodds J.A., Arnoczky S.P., Basic Science – Meniscus, in: Johnson, D. H. & Pedowitz, R. A. (eds), Practical Orthopaedic Sports Medicine and Arthroscopy, 1st ed., Lippincott Williams & Wilkins, Philadelphia, (2007), 14-16.

Google Scholar

[8] Antoniac I., Biologically responsive biomaterials for tissue engineering, Publisher Springer, New York (2013), 1-33.

Google Scholar

[9] Kawamura S., Lotito K., Rodeo S. A., Biomechanics and healing response of the meniscus, Operative techniques in Sports Medicine, 11 (2003) 68-76.

DOI: 10.1053/otsm.2003.35899

Google Scholar

[10] Fisher M.B., Mauck R.L., Mechanics of Fiber-Reinforced Scaffolds and Tissue Formed from Organized Eletrospun Assemblies, in: Ramalingam M., Vallittu P., Ripamonti U., Wan-Ju L. (Eds. ), Tissue engineering and regenerative medicine: A Nano approach., CRC Press, Taylor & Francis Group, Boca Raton, Fl, 2013, pp.269-270.

DOI: 10.1201/b13049-17

Google Scholar

[11] Masouros S.D., McDermott I.D., Bull A.M.J., Amis A.A., Biomechanics, in: Beaufils P. & Verdonk R. (Eds. ), The Meniscus, Springer Verlarg Berlin Heidelberg, (2010), 29-30.

Google Scholar

[12] Vrancken A., Buma P., Van Tienen T., Synthetic meniscus replacement: a review, Int Orthop., 37 (2013), 291-299.

DOI: 10.1007/s00264-012-1682-7

Google Scholar

[13] Roth C., Rodeo S.A., Indications and Techniques for Meniscus Repair, in: Simonian P. T., Cole B. J., Bach B. R. (Eds. ), Sports Injuries of the Knee: Surgical Approaches, Thieme Medical Publisher, Inc., New York, NY, (2006), 8-10.

DOI: 10.1055/b-0034-71656

Google Scholar

[14] Drengk, A., Sturmer, K. M., Frosch, K.H., Current concepts in meniscus tissue engineering. Current Reumatology Review, 4 (2008), 196-201.

DOI: 10.2174/157339708785133532

Google Scholar

[15] Vedi V., Williams A., Tennant S.J., Spouse E., Hunt D.M., Gedroyc W.M., Meniscal movement: an in-vivo study using dynamic MRI, The Journal of Bone and Joint Surgery, 81-B (1999), 37-41.

DOI: 10.1302/0301-620x.81b1.0810037

Google Scholar

[16] Papalia R., Francesco F., Balzani L.D., D'Adamio S., Maffulli N., Scaffolds for partial meniscal replacement: an uptaded systematic review, British medical bulletin advance access, 107 (2013), 19-40.

DOI: 10.1093/bmb/ldt007

Google Scholar

[17] Fairbank T.J., Knee joint changes after meniscectomy. The bone and joint surgery, 30B (1948), 664-670.

DOI: 10.1302/0301-620x.30b4.664

Google Scholar

[18] Longo U.G., Campi S., Romeo G., Spiezia F., Maffulli N., Denaro V., Biological Strategies to Enhance Healing of the Avascular Area of the Meniscus, Stem Cell International, (2011).

DOI: 10.1155/2012/528359

Google Scholar

[19] Scordino L., Deberardino T., Biologic enhancement of meniscus repair. Clinics in Sports Medicine, 31 (2012), 91-100.

DOI: 10.1016/j.csm.2011.09.001

Google Scholar

[20] Ripolli P., Vaquero J., Forriol F., Sustitutos meniscales (transplante de menisco y plantillas de colageno), Ortho tips, 5 (2009), 339-353.

Google Scholar

[21] Esposito A.R., Moda M., Cattani S.M.M., Santana G.M., Barbieri J.A., Munhoz M.M., Cardoso T.P., Barbo A.L.P., Russo T., D'Amora U., Gloria A., Ambrosio L., Duek E.A.R., PLDA/PCL-T Scaffold for meniscus tissue engineering, BioResearch Open Access, 2 (2013).

DOI: 10.1089/biores.2012.0293

Google Scholar

[22] Verdonk R., Meniscal Transplantation, Acta Orthopaedica Belgica, 68 (2002), 118-127.

Google Scholar

[23] Crook T.B., Ardolino A., Williams L.A.P., Barlow I.W., Meniscal allograft transplantation: a review of the, The Royal College of Surgeons of England, 91 (2009), 361-365.

DOI: 10.1308/003588409x428559

Google Scholar

[24] Haut Donahue TL, Hull ML, Rashid MM, Jacobs CR, How the stiffness of meniscal attachments and meniscal material properties affect tibio-femoral contact pressure computed using a validated finite element model of the human knee joint, Journal of biomechanics, 36 (2003).

DOI: 10.1016/s0021-9290(02)00305-6

Google Scholar

[25] Schoenfeld A. J., Landis W. J., Kay D. B., Tissue- engineered meniscal constructs. The American Journal of Orthopedics, 36 (2007), 614-620.

Google Scholar

[26] Klompmaker J., Jansen H.W., Veth R.P., Nielsen H.K., de Groot J.H., Pennings A.J., Porous implants for knee joint meniscus reconstruction: a preliminary study on the role of pore sizes in ingrowth and differentiation of fibrocartilage, Clin Mater, 14 (1993).

DOI: 10.1016/0267-6605(93)90041-5

Google Scholar

[27] Kang S.W., Son S.M., Lee J.S., Lee E.S., Lee K.Y., Park S.G., Park J.H., Kim B.S., Regeneration of whole meniscus using meniscal cells and polymer scaffolds in a rabbit total meniscectomy model, J Biomed Mater Res A, 78 (2006), 659-671.

DOI: 10.1002/jbm.a.30904

Google Scholar

[28] Mandal B.B., Park S.H., Gil E.S., Kaplan D.L., Multilayered silk scaffolds for meniscus tissue engineering, Biomaterials, 32B (2011), 639-651.

DOI: 10.1016/j.biomaterials.2010.08.115

Google Scholar

[29] Kobayashi M., Matsumura K., Hyu H. S., A Preliminary In Vivo Study of Artificial Meniscus Using the Uniaxial Oriented Reinforced Compressive Polyvinyl Alcohol Hydrogel, Trends in Biomaterials & Artificial Organs, 25 (2011), 107-111.

DOI: 10.1016/s0142-9612(02)00378-2

Google Scholar

[30] Bhargava M.M., Attia E.T., Murrell G.A., Dolan M.M., Warren R.F., Hannafin J.A., The Effect of Cytokines on the Proliferation and Migration of Bovine Meniscal Cells, The American Journal of Sports Medicine, 27 (1999), 636-643.

DOI: 10.1177/03635465990270051601

Google Scholar

[31] Mandal B.B., Park S.H., Gil E.S., Kaplan D., Stem Cell-Based Meniscus Tissue Engineering, Tissue engineering: part A, 17 (2011), 2749-2761.

DOI: 10.1089/ten.tea.2011.0031

Google Scholar

[32] Rodkey W.G., DeHaven K.E., Montgomery W.H. 3rd, Baker C.L. Jr., Beck C.L. Jr., Hormel S.E., Steadman J.R., Cole B.J., Briggs K.K., Comparison of the collagen meniscus implant with partial meniscectomy. A prospective randomized trial, The Journal of Bone and Joint Surgery, 90 (2008).

DOI: 10.2106/jbjs.g.00656

Google Scholar

[33] Sandmann G.H., Adamczyk C., Garcia E.G., Doebele S., Buettner A., Milz S., Imhoff A.B., Vogt S., Burgkart R., Tischer T., Biomechanical comparison of menisci from different species and artificial construct. BMC Musculoskeletal Disorders, 324 (2013).

DOI: 10.1186/1471-2474-14-324

Google Scholar

[34] Spencer S.J., Saithna A., Carmont M.R., Dhillon M.S., Thompson P., Spalding T., Meniscal scaffolds: early experience and review of the literature, Knee, 19 (2012), 760-765.

DOI: 10.1016/j.knee.2012.01.006

Google Scholar

[35] Bouyarme H., Beaufils P., Punjol N., Bellemans J., Roberts S., Spalding T., Zaffagni S., Marcacci M., Verdonk P., Womack M., Verdonk R., Polyurethane scaffold in lateral meniscus segmental defects: Clinical outcome at 24 months follow-up, Orthopaedics & Traumatology: Surgery & Research, 1 (2014).

DOI: 10.1016/j.otsr.2013.10.011

Google Scholar

[36] Monllau J.C., Gelber P.E., Abat F., Perfort X., Abad R., Hinerejos P., Tey M., Outcome after partial medial meniscus substitution with the collagen meniscal implant at minimum of 10 years' follow-up, Arthroscopy, 7 (2011), 933-943.

DOI: 10.1016/j.arthro.2011.02.018

Google Scholar

[37] Bulgheroni P., Bulgheroni E., Regazzola G., Mazzola C., Polyurethane scaffold for the treatment of partial meniscal tears. Clinical results with a minumum two-year follow-up, Joints Journal, 1 (2013), 161-166.

DOI: 10.11138/jts/2013.1.4.161

Google Scholar