Short Term Behaviour of Fixed-Loop Cortical Suspension System Used for Surgical Treatment of Hallux valgus

Article Preview

Abstract:

Hallux valgus represents an acquired foot deformity characterized by lateral deviation of the hallux and medial deviation of the first metatarsal. Pain during gait is the main complain and is caused by reduction of plantar pressure under the first ray leading to insufficiency of the first ray and overload of the lesser rays. Treatment can be nonoperative or surgical with more than one hundred surgical techniques described so far. The scope of this study was to assess the short term reliability and stability of fixed loop suspension systems used for surgical treatment of this pathology using radiological evaluation of hallux valgus angle and the intermetatarsal angle. Our results show good stability of the reduction and good reliability of the suspension system, with a six months follow-up. Only one specific complication (failure of the wiring material) is highlighted by our conclusions and the need for biomechanical testing in controlled laboratory studies.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

134-144

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Mann R.A., Coughlin M.J., Hallux valgus - etiology, anatomy, treatment and surgical considerations, Clin Orthop Relat Res, 157 (1981), 31-41.

DOI: 10.1097/00003086-198106000-00008

Google Scholar

[2] Inman V.T., Hallux valgus: a review of etiologic factors, The Orthopedic Clinics of North America, 5 (1974), 59-66.

DOI: 10.1016/s0030-5898(20)31240-2

Google Scholar

[3] Coughlin M.J., Shurnas P.S., Hallux valgus in men: part II: first ray mobility after bunionectomy and factors associated with hallux valgus deformity, Foot Ankle Int, 24 (2003), 73-78.

DOI: 10.1177/107110070302400112

Google Scholar

[4] Ferrari J., Malone-Lee J., The shape of the metatarsal head as a cause of hallux abductovalgus. Foot and Ankle International, 23 (2002), 236-242.

DOI: 10.1177/107110070202300308

Google Scholar

[5] Ferrari J., Hopkinson D.A., Linney A.D., Size and Shape Differences Between Male and Female Foot Bones Is the Female Foot Predisposed to Hallux Abducto Valgus Deformity?, Journal of the American Pediatric Medical Association, 94 (2004), 434-452.

DOI: 10.7547/0940434

Google Scholar

[6] Coughlin M.J., Hallux valgus, J Bone Joint Surg Am, 78 (1996), 932-966.

Google Scholar

[7] Kitaoka H.B., Franco M.G., Weaver A. L, Ilstrup D.M., Simple bunionectomy with medial capsulorrhaphy, Foot Ankle 12 (1991) 86-91.

DOI: 10.1177/107110079101200205

Google Scholar

[8] Pouliart N., Haentjens P., Opdecam P., Clinical and radiological evaluation of Wilson osteotomy for hallux valgus, Foot Ankle Int, 17 (1996) 388-394.

DOI: 10.1177/107110079601700706

Google Scholar

[9] Blum J.L., The modified Mitchell osteotomy-bunionectomy: indications and technical considerations, Foot Ankle Int, 15 (1994), 103-106.

DOI: 10.1177/107110079401500304

Google Scholar

[10] Chlodo C.P., Schon L.C., Myerson M.S., Clinical results with the Ludloff osteotomy for correction of adult hallux valgus, Foot Ankle Int 25 (2004) 532-536.

DOI: 10.1177/107110070402500804

Google Scholar

[11] Barouk L.S., Scarf osteotomy for hallux valgus correction: local anatomy, surgical technique, and combination with other forefoot procedures, Foot Ankle Clin, 5 (2000) 525-558.

Google Scholar

[12] Borton D.C., Stephens M.M., Basal metatarsal osteotomy for hallux valgus, J Bone Joint Surg [Br], 76B (1994) 204-209.

DOI: 10.1302/0301-620x.76b2.8113277

Google Scholar

[13] Coetzee J.C., Wickum D., The Lapidus procedure: a prospective cohort outcome study, Foot Ankle Int, 25 (2004) 526-531.

DOI: 10.1177/107110070402500803

Google Scholar

[14] Antoniac I., Biologically responsive biomaterials for tissue engineering, Springer (2013), 107-136.

Google Scholar

[15] Nicoara M., Raduta A., Parthiban R., Locovei C., Eckert J., Stoica M., Low Young's modulus Ti-based porous bulk glassy alloy without cytotoxic elements, Acta Biomaterialia, 36 (2016) 323–331.

DOI: 10.1016/j.actbio.2016.03.020

Google Scholar

[16] Miculescu F., Bojin D, Ciocan L.T., Antoniac I., Miculescu M, Miculescu N, Experimental researches on biomaterial-tissue interface interactions, JOAM, 9: 11 (2007), 3303–3306.

DOI: 10.4028/www.scientific.net/kem.638.14

Google Scholar

[17] Antoniac I., Handbook of Bioceramics and Biocomposites, Springer International Publishing, (2016) 935-967.

Google Scholar

[18] Niculescu M., Antoniac I., Blajan A., Metallic biomaterials processing technologies in order to obtain a new design for a hip prosthesis femoral component, Solid State Phenomena, 216 (2016) 239-242.

DOI: 10.4028/www.scientific.net/ssp.216.239

Google Scholar

[19] Niculescu M., Laptoiu D., Miculescu F., Antoniac I., Metal allergy and other adverse reactions in patients with total hip replacement, Advanced Materials Research, 1114 (2015) 283-287.

DOI: 10.4028/www.scientific.net/amr.1114.283

Google Scholar

[20] Ionescu R., Cristescu I., Dinu M., Saban R., Antoniac I., Vilcioiu D., Clinical, biomechanical and biomaterials approach in the case of fracture repair using different systems type plate-screw, KEM, 583 (2014), 150-154.

DOI: 10.4028/www.scientific.net/kem.583.150

Google Scholar

[21] Ionescu R., Mardare M., Dorobantu A., Vermesan S., Marinescu E., Saban R., Antoniac I., Ciocan D.N., Ceausu M., Correlation Between Materials, Design and Clinical Issues in the Case of Associated Use of Different Stainless Steels as Implant Materials, KEM, 583 (2014).

DOI: 10.4028/www.scientific.net/kem.583.41

Google Scholar

[22] Cristescu I., Antoniac I., Vilcioiu D., Safta F., Analysis of centromedullary nailing with implant failure, KEM, 638 (2015), 130-134.

DOI: 10.4028/www.scientific.net/kem.638.130

Google Scholar

[23] Bane M., Miculescu F., Blajan A., Dinu M., Antoniac I., Failure analysis of some retrieved orthopedic implants based on materials characterization, Solid State Phenomena, 188 (2012), 114-117.

DOI: 10.4028/www.scientific.net/ssp.188.114

Google Scholar

[24] Antoniac I., Miculescu M., Dinu M., Metallurgical characterization of some magnesium alloys for medical applications, Solid State Phenomena, 188 (2012), 109-113.

DOI: 10.4028/www.scientific.net/ssp.188.109

Google Scholar

[25] Rau J., Antoniac I., Fosca M., et al., Glass-ceramic coated Mg-Ca alloys for biomedical implant applications, Mater Sci Eng C Mater Biol Appl, 64 (2016), 362-369.

DOI: 10.1016/j.msec.2016.03.100

Google Scholar

[26] Bita A., Antoniac A., Cotrut C., Vasile E., Ciuca I., Niculescu M., Antoniac I., In vitro Degradation and Corrosion Evaluation of Mg-Ca Alloys for Biomedical Applications, JOAM, 18: 3-4 (2016), 394-398.

DOI: 10.1080/01694243.2016.1171569

Google Scholar

[27] Raduta A., Nicoara M., Locovei C., Eckert J., Stoica M., Ti-based bulk glassy composites obtained by replacement of Ni with Ga, Intermetallics, 69 (2016), 28–34.

DOI: 10.1016/j.intermet.2015.10.013

Google Scholar

[28] Nicoara, M., Raduta, A., Locovei, C. Buzdugan D., Stoica M., About thermostability of biocompatible Ti–Zr–Ta–Si amorphous alloys, J Therm Anal Calorim 127: 1 (2017), 107-113.

DOI: 10.1007/s10973-016-5532-5

Google Scholar

[29] Rau J., Antoniac I., Cama G., Ravaglioli A., Bioactive Materials for Bone Tissue Engineering, BioMed Research International, vol. 2016, Article ID 3741428, (2016), 1-3.

DOI: 10.1155/2016/3741428

Google Scholar

[30] Delgado-Martínez AD, Cirugía Ortopédica y Traumatología, Madrid: Panamericana SA (2009) 833-848.

Google Scholar

[31] Kayiaros S., Blankenhorn B.D., Dehaven J., Van Lancker H., Sardella P., Pascalides J.T., Digiovanni C.W., Correction of metatarsus primus varus associated with hallux valgus deformity using the Arthrex mini TightRope: a report of 44 cases, Foot Ankle Spec, 4 (2011).

DOI: 10.1177/1938640011402823

Google Scholar

[32] Stephens M.M., Pathogenesis of hallux valgus, Eur J Foot Ankle Surg, 1 (1994) 7-10.

Google Scholar

[33] Flores-Carrillo A., Farías-Cisneros E., Ruiz-Osuna C., Minimally invasive treatment of mild and moderate hallux valgus, Acta Ortop Mex, 23 (2009) 272-276.

Google Scholar

[34] Merino-Pérez J., Ibor-Urena I., Rodríguez-Palomo J.M., Fernández Rioja L.M., Martín-Larranaga N., Vicinay-Olabarría J.I., Resultados a largo plazo de la osteotomía percutánea del metatarso distal (técnica de Bösch modificada) para la corrección del hallux valgus, Rev Ortop Traumatol, 54 (2010).

DOI: 10.1016/j.recot.2010.01.003

Google Scholar

[35] Kitaoka H.B., Franco M.G., Weaver A.L., Ilstrup D.M., Simple bunionectomy with medial capsulorrhaphy, Foot Ankle, 12 (1991) 86-91.

DOI: 10.1177/107110079101200205

Google Scholar

[36] Mann R.A., Pfeffinger L., Hallux valgus repair: DuVries modified McBride procedure, Clin Orthop, 272 (1991) 213-218.

DOI: 10.1097/00003086-199111000-00032

Google Scholar

[37] Belczyk R., Stapleton J.J., Grossman J.P., Zgonis T., Complications and revisional hallux valgus surgery, Clin Pediatr Med Surg, 26 (2009) 475-84.

DOI: 10.1016/j.cpm.2009.04.002

Google Scholar

[38] Barouk L.S., Techniques of osteotomies of the forefoot, Monographie des journées de Bordeaux, 10 (1994) 20-22.

Google Scholar

[39] Kayiaros S., Blankenhorn B.D., Dehaven J., Van Lancker H., Sardella P., Pascalides J.T., Digiovanni C.W., Correction of metatarsus primus varus associated with hallux valgus deformity using the Arthrex mini TightRope: a report of 44 cases, Foot Ankle Spec, 4 (2011).

DOI: 10.1177/1938640011402823

Google Scholar

[40] Holmes G., Correction of hallux valgus deformity using the mini TightRope device, Tech Foot Ankle Surg, 7 (2008) 9–16.

DOI: 10.1097/btf.0b013e318165f358

Google Scholar

[41] West B.C., Mini TightRope system for hallux abducto valgus deformity: a discussion and case report, J Am Pediatr Med Assoc, 100 (2010) 291-295.

DOI: 10.7547/1000291

Google Scholar

[42] Weatherall J.M., Chapman C.B., Shapiro S.L., Postoperative second metatarsal fractures associated with suture-button implant in hallux valgus surgery, Foot Ankle Int, 34 (2013) 104–110.

DOI: 10.1177/1071100712458961

Google Scholar

[43] Kemp T.J., Hirose C.B., Coughlin M.J., Fracture of the second metatarsal following suture button fixation device in the correction of hallux valgus, Foot Ankle Int, 31 (2010) 712–716.

DOI: 10.3113/fai.2010.0712

Google Scholar

[44] Holmes Jr.G.B., Hsu A.R., Correction of intermetatarsal angle in hallux valgus using small suture button device, Foot Ankle Int, 34 (2013) 534–539.

DOI: 10.1177/1071100713477628

Google Scholar

[45] Weil L.S., Scarf osteotomy for correction of hallux valgus: historical perspective, surgical technique and results, Foot Ankle Clin, 5 (2000) 559-580.

Google Scholar