[1]
Agarwal A K, Augustine G, Balakrishna V, et al. SiC electronics[C]. International Electron Devices Meeting. Technical Digest. IEEE, 1996: 225-230.
Google Scholar
[2]
Okamoto D, Yano H, Hirata K, et al. Improved inversion channel mobility in 4H-SiC MOSFETs on Si face utilizing phosphorus-doped gate oxide[J]. IEEE Electron Device Letters, 2010, 31(7): 710-712.
DOI: 10.1109/led.2010.2047239
Google Scholar
[3]
Uhnevionak V, Burenkov A, Strenger C, et al. Comprehensive study of the electron scattering mechanisms in 4H-SiC MOSFETs[J]. IEEE Transactions on Electron Devices, 2015, 62(8): 2562-2570.
DOI: 10.1109/ted.2015.2447216
Google Scholar
[4]
Cochrane C J, Lenahan PM, Lelis A J. An electrically detected magnetic resonance study of performance-limiting defects in SiC metal-oxide-semiconductor field-effect transistors[J]. Journal of Applied Physics, 2011, 109(1): 014506.
DOI: 10.1063/1.3530600
Google Scholar
[5]
Potbhare S, Goldsman N, Lelis A, et al. A physical model of high-temperature 4H-SiC MOSFETs[J]. IEEE Transactions on Electron devices, 2008, 55(8): 2029-2040.
DOI: 10.1109/ted.2008.926665
Google Scholar
[6]
Knaup J M, Deák P, Frauenheim T, et al. Defects in SiO2 as the possible origin of near interface traps in the SiC/SiO2 system: A systematic theoretical study[J]. Physical Review B, 2005, 72(11): 115323.
Google Scholar
[7]
El-Sayed AM, Watkins M B, Shluger A L, et al. Identification of intrinsic electron trapping sites in bulk amorphous silica from ab initio calculations[J]. Microelectronic engineering, 2013, 109: 68-71.
DOI: 10.1016/j.mee.2013.03.027
Google Scholar
[8]
Tuttle B R, Pantelides S T. Vacancy-related defects and the Eδ' center in amorphous silicon dioxide: Density functional calculations[J]. Physical Review B, 2009, 79(11): 115206.
DOI: 10.1103/physrevb.79.115206
Google Scholar
[9]
Lelis A J, Green R, Habersat D B. High-temperature reliability of SiC power MOSFETs[C]. Materials Science Forum. Trans Tech Publications Ltd, 2011, 679: 599-602.
DOI: 10.4028/www.scientific.net/msf.679-680.599
Google Scholar
[10]
Fiorenza P, Greco G, Giannazzo F, et al. Effects of interface states and near interface traps on the threshold voltage stability of GaN and SiC transistors employing SiO2 as gate dielectric[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2017, 35(1): 01A101.
DOI: 10.1116/1.4967306
Google Scholar
[11]
Aichinger T, Rescher G, Pobegen G. Threshold voltage peculiarities and bias temperature instabilities of SiC MOSFETs[J]. Microelectronics Reliability, 2018, 80:págs. 68-78.
DOI: 10.1016/j.microrel.2017.11.020
Google Scholar
[12]
Yang C, Gu Z, Yin Z, et al. Interfacial traps and mobile ions induced flat band voltage instability in 4H-SiC MOS capacitors under bias temperature stress[J]. Journal of Physics D Applied Physics, 2019, 52(40).
DOI: 10.1088/1361-6463/ab2faf
Google Scholar
[13]
Habersat D B, Lelis A J, Green R. Measurement considerations for evaluating BTI effects in SiC MOSFETs[J]. Microelectronics Reliability, 2018, 81(FEB.):121-126.
DOI: 10.1016/j.microrel.2017.12.015
Google Scholar
[14]
Puschkarsky K, Grasser T, Aichinger T, et al. Review on SiC MOSFETs High-Voltage Device Reliability Focusing on Threshold Voltage Instability[J]. IEEE Transactions on Electron Devices, 2019, PP(99):1-13.
DOI: 10.1109/ted.2019.2938262
Google Scholar
[15]
Lelis A, Habersat D, Green R, et al. Key reliability issues for SiC power MOSFETs[J]. ECS Transactions, 2013, 58(4): 87.
DOI: 10.1149/05804.0087ecst
Google Scholar
[16]
Habersat D B, Lelis A, Green R, et al. Evaluation of PBTS and NBTS in SiC MOS using in situ charge pumping measurements[C]. Materials Science Forum. Trans Tech Publications Ltd, 2013, 740: 545-548.
DOI: 10.4028/www.scientific.net/msf.740-742.545
Google Scholar
[17]
Heiman F P, Warfield G. The effects of oxide traps on the MOS capacitance[J]. Electron Devices IEEE Transactions on, 1965, 12(4):167-178.
DOI: 10.1109/t-ed.1965.15475
Google Scholar
[18]
D Habersat, Lelis A. Improved Observation of SiC/SiO2 Oxide Charge Traps Using MOS C-V[J]. Materials Science Forum, 2011, 679-680:366-369.
DOI: 10.4028/www.scientific.net/msf.679-680.366
Google Scholar
[19]
Lelis A J, Habersat D B, Green R, et al. Two-Way Tunneling Model of Oxide Trap Charging and Discharging in SiC MOSFETs[J]. Materials Science Forum, 2012, 717-720:465-468.
DOI: 10.4028/www.scientific.net/msf.717-720.465
Google Scholar
[20]
Lelis A J, Green R, Habersat D B, et al. Basic Mechanisms of Threshold-Voltage Instability and Implications for Reliability Testing of SiC MOSFETs[J]. IEEE Transactions on Electron Devices, 2015, 62(2):316-323.
DOI: 10.1109/ted.2014.2356172
Google Scholar
[21]
Fiorenza P, Giannazzo F, Cascino S, et al. Identification of two trapping mechanisms responsible of the threshold voltage variation in SiO2/4H-SiC MOSFETs[J]. Applied Physics Letters, 2020, 117(10):103502.
DOI: 10.1063/5.0012399
Google Scholar
[22]
White W, Dease C G. Modeling GaAs high-voltage, subnanosecond photoconductive switches in one spatial dimension[J]. IEEE Transactions on Electron Devices, 1990, 37(12):P.2532-2541.
DOI: 10.1109/16.64530
Google Scholar