Simulation of Threshold Voltage Instability of 4H-SiC MOSFET

Article Preview

Abstract:

The reliability issue of threshold voltage (Vgs(th)) still exists in Silicon carbide (SiC) based metal-oxide-semiconductor-field-effect-transistors (MOSFETs). In this paper, the threshold voltage instability of 4H-SiC MOSFET is deeply studied through Silvaco TCAD simulation. This work mainly investigates the instability (shift) of the Vgs(th) affected by interface states (interface traps), near interface traps, and mobile ions. The results display that the effect of near interface traps on the Vgs(th) shift is greater than that of interface traps. The electron capture ability is related to the energy level of the traps. With the energy level increasing, the Vgs(th) shift increases firstly and then decreases. The peak energy level is related to the trap position and trap density. Furthermore, the effect of the mobile ions in the oxide layer on the Vgs(th) shift is limited. However, when moving to the SiC/SiO2 interface, they will greatly impact the Vgs(th) and affect the device performance seriously.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

119-126

Citation:

Online since:

July 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Agarwal A K, Augustine G, Balakrishna V, et al. SiC electronics[C]. International Electron Devices Meeting. Technical Digest. IEEE, 1996: 225-230.

Google Scholar

[2] Okamoto D, Yano H, Hirata K, et al. Improved inversion channel mobility in 4H-SiC MOSFETs on Si face utilizing phosphorus-doped gate oxide[J]. IEEE Electron Device Letters, 2010, 31(7): 710-712.

DOI: 10.1109/led.2010.2047239

Google Scholar

[3] Uhnevionak V, Burenkov A, Strenger C, et al. Comprehensive study of the electron scattering mechanisms in 4H-SiC MOSFETs[J]. IEEE Transactions on Electron Devices, 2015, 62(8): 2562-2570.

DOI: 10.1109/ted.2015.2447216

Google Scholar

[4] Cochrane C J, Lenahan PM, Lelis A J. An electrically detected magnetic resonance study of performance-limiting defects in SiC metal-oxide-semiconductor field-effect transistors[J]. Journal of Applied Physics, 2011, 109(1): 014506.

DOI: 10.1063/1.3530600

Google Scholar

[5] Potbhare S, Goldsman N, Lelis A, et al. A physical model of high-temperature 4H-SiC MOSFETs[J]. IEEE Transactions on Electron devices, 2008, 55(8): 2029-2040.

DOI: 10.1109/ted.2008.926665

Google Scholar

[6] Knaup J M, Deák P, Frauenheim T, et al. Defects in SiO2 as the possible origin of near interface traps in the SiC/SiO2 system: A systematic theoretical study[J]. Physical Review B, 2005, 72(11): 115323.

Google Scholar

[7] El-Sayed AM, Watkins M B, Shluger A L, et al. Identification of intrinsic electron trapping sites in bulk amorphous silica from ab initio calculations[J]. Microelectronic engineering, 2013, 109: 68-71.

DOI: 10.1016/j.mee.2013.03.027

Google Scholar

[8] Tuttle B R, Pantelides S T. Vacancy-related defects and the Eδ' center in amorphous silicon dioxide: Density functional calculations[J]. Physical Review B, 2009, 79(11): 115206.

DOI: 10.1103/physrevb.79.115206

Google Scholar

[9] Lelis A J, Green R, Habersat D B. High-temperature reliability of SiC power MOSFETs[C]. Materials Science Forum. Trans Tech Publications Ltd, 2011, 679: 599-602.

DOI: 10.4028/www.scientific.net/msf.679-680.599

Google Scholar

[10] Fiorenza P, Greco G, Giannazzo F, et al. Effects of interface states and near interface traps on the threshold voltage stability of GaN and SiC transistors employing SiO2 as gate dielectric[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2017, 35(1): 01A101.

DOI: 10.1116/1.4967306

Google Scholar

[11] Aichinger T, Rescher G, Pobegen G. Threshold voltage peculiarities and bias temperature instabilities of SiC MOSFETs[J]. Microelectronics Reliability, 2018, 80:págs. 68-78.

DOI: 10.1016/j.microrel.2017.11.020

Google Scholar

[12] Yang C, Gu Z, Yin Z, et al. Interfacial traps and mobile ions induced flat band voltage instability in 4H-SiC MOS capacitors under bias temperature stress[J]. Journal of Physics D Applied Physics, 2019, 52(40).

DOI: 10.1088/1361-6463/ab2faf

Google Scholar

[13] Habersat D B, Lelis A J, Green R. Measurement considerations for evaluating BTI effects in SiC MOSFETs[J]. Microelectronics Reliability, 2018, 81(FEB.):121-126.

DOI: 10.1016/j.microrel.2017.12.015

Google Scholar

[14] Puschkarsky K, Grasser T, Aichinger T, et al. Review on SiC MOSFETs High-Voltage Device Reliability Focusing on Threshold Voltage Instability[J]. IEEE Transactions on Electron Devices, 2019, PP(99):1-13.

DOI: 10.1109/ted.2019.2938262

Google Scholar

[15] Lelis A, Habersat D, Green R, et al. Key reliability issues for SiC power MOSFETs[J]. ECS Transactions, 2013, 58(4): 87.

DOI: 10.1149/05804.0087ecst

Google Scholar

[16] Habersat D B, Lelis A, Green R, et al. Evaluation of PBTS and NBTS in SiC MOS using in situ charge pumping measurements[C]. Materials Science Forum. Trans Tech Publications Ltd, 2013, 740: 545-548.

DOI: 10.4028/www.scientific.net/msf.740-742.545

Google Scholar

[17] Heiman F P, Warfield G. The effects of oxide traps on the MOS capacitance[J]. Electron Devices IEEE Transactions on, 1965, 12(4):167-178.

DOI: 10.1109/t-ed.1965.15475

Google Scholar

[18] D Habersat, Lelis A. Improved Observation of SiC/SiO2 Oxide Charge Traps Using MOS C-V[J]. Materials Science Forum, 2011, 679-680:366-369.

DOI: 10.4028/www.scientific.net/msf.679-680.366

Google Scholar

[19] Lelis A J, Habersat D B, Green R, et al. Two-Way Tunneling Model of Oxide Trap Charging and Discharging in SiC MOSFETs[J]. Materials Science Forum, 2012, 717-720:465-468.

DOI: 10.4028/www.scientific.net/msf.717-720.465

Google Scholar

[20] Lelis A J, Green R, Habersat D B, et al. Basic Mechanisms of Threshold-Voltage Instability and Implications for Reliability Testing of SiC MOSFETs[J]. IEEE Transactions on Electron Devices, 2015, 62(2):316-323.

DOI: 10.1109/ted.2014.2356172

Google Scholar

[21] Fiorenza P, Giannazzo F, Cascino S, et al. Identification of two trapping mechanisms responsible of the threshold voltage variation in SiO2/4H-SiC MOSFETs[J]. Applied Physics Letters, 2020, 117(10):103502.

DOI: 10.1063/5.0012399

Google Scholar

[22] White W, Dease C G. Modeling GaAs high-voltage, subnanosecond photoconductive switches in one spatial dimension[J]. IEEE Transactions on Electron Devices, 1990, 37(12):P.2532-2541.

DOI: 10.1109/16.64530

Google Scholar