[1]
T. Kimoto, Material science and device physics in SiC technology for high-voltage power devices, Jpn. J. Appl. Phys. 54 (2015).
DOI: 10.7567/jjap.54.040103
Google Scholar
[2]
H. Xu, C. Wan, J.-P. Ao, Reliability of 4H-SiC (0001) MOS Gate Oxide by NO Post-Oxide-Annealing, Mater. Sci. Forum (2019).
DOI: 10.4028/www.scientific.net/msf.954.109
Google Scholar
[3]
H. Xu, C. Wan, J.-P. Ao, The Correlation between the Reduction of Interface State Density at the SiO2/SiC Interface and the NO Post-oxide-annealing Conditions, Mater. Sci. Forum (2019).
DOI: 10.4028/www.scientific.net/msf.954.104
Google Scholar
[4]
H.L. Yu, X.F. Zhang, H.J. Shen, Y.D. Tang, Y. Bai, Y.D. Wu, K. Liu, X.Y. Liu, Thermal stability of Ni/Ti/Al ohmic contacts to p-type 4H-SiC, J. Appl. Phys. 117 (2015) 8.
DOI: 10.1063/1.4905832
Google Scholar
[5]
X.F. Zhang, Y.D. Tang, H.J. Shen, Y. Bai, R.B. Huo, W.W. Wang, S. Liu, Ieee, STUDY ON SIMULTANEOUS FORMATION OF OHMIC CONTACTS ON p- AND n- TYPE 4H-SiC USING Ni/Ti/Al TERNARY SYSTEM, Ieee, New York, 2014.
DOI: 10.1109/icsict.2014.7021382
Google Scholar
[6]
F. Laariedh, M. Lazar, P. Cremillieu, J. Penuelas, J.L. Leclercq, D. Planson, The role of nickel and titanium in the formation of ohmic contacts on p-type 4H-SiC, Semicond. Sci. Technol. 28 (2013) 6.
DOI: 10.1088/0268-1242/28/4/045007
Google Scholar
[7]
Z. Zhang, J. Teng, W.X. Yuan, F.F. Zhang, G.H. Chen, Kinetic study of interfacial solid state reactions in the Ni/4H–SiC contact, Appl. Surf. Sci. 255 (2009) 6939-6944.
DOI: 10.1016/j.apsusc.2009.03.018
Google Scholar
[8]
S. Cichoň, P. Macháč, B. Barda, V. Machovič, P. Slepička, Raman study of Ni and Ni silicide contacts on 4H– and 6H–SiC, Thin Solid Films 520 (2012) 4378-4388.
DOI: 10.1016/j.tsf.2012.02.008
Google Scholar
[9]
B. Barda, P. Macháč, S. Cichoň, V. Machovič, M. Kudrnová, A. Michalcová, J. Siegel, Origin of ohmic behavior in Ni, Ni2Si and Pd contacts on n-type SiC, Appl. Surf. Sci. 257 (2010) 414-422.
DOI: 10.1016/j.apsusc.2010.07.003
Google Scholar
[10]
S. Liu, Z. He, L. Zheng, B. Liu, F. Zhang, L. Dong, L. Tian, Z. Shen, J. Wang, Y. Huang, Z. Fan, X. Liu, G. Yan, W. Zhao, L. Wang, G. Sun, F. Yang, Y. Zeng, The thermal stability study and improvement of 4H-SiC ohmic contact, Appl. Phys. Lett. 105 (2014) 122106.
DOI: 10.1063/1.4896320
Google Scholar
[11]
D. Bae, G. Ahn, C. Jeong, K. Kim, Ni/W/Ni ohmic contacts for both n- and p-type 4H-SiC, Electrical Engineering 100 (2018) 2431-2437.
DOI: 10.1007/s00202-018-0711-y
Google Scholar
[12]
J.R. Nicholls, S. Dimitrijev, Regression Model for the Specific Contact Resistance of SiC Ohmic Contacts, IEEE Transactions on Semiconductor Manufacturing 34 (2021) 493-499.
DOI: 10.1109/tsm.2021.3108460
Google Scholar
[13]
A. Kuchuk, P. Borowicz, M. Wzorek, M. Borysiewicz, R. Ratajczak, K. Golaszewska, E. Kaminska, V. Kladko, A. Piotrowska, Ni-Based Ohmic Contacts to n-Type 4H-SiC: The Formation Mechanism and Thermal Stability, Adv. Condens. Matter Phys 2016 (2016) 26 pages.
DOI: 10.1155/2016/9273702
Google Scholar
[14]
T. Fujimura, S.I. Tanaka, In-situ high temperature X-ray diffraction study of Ni/SiC interface reactions, Journal of Materials Science 34 (1999) 235-239.
Google Scholar
[15]
Y. Hoshino, S. Matsumoto, T. Nakada, Y. Kido, Interfacial reactions between ultra-thin Ni-layer and clean 6H-SiC(0001) surface, Surf. Sci. 556 (2004) 78-86.
DOI: 10.1016/j.susc.2004.03.027
Google Scholar
[16]
Y. Hoshino, O. Kitamura, T. Nakada, Y. Kido, Structure change of ultra-thin Ni-deposited 6H-SiC(0001)-root 3-x root 3-surface by post-annealing, Surf. Sci. 539 (2003) 14-20.
DOI: 10.1016/s0039-6028(03)00701-5
Google Scholar
[17]
I. Ohdomari, S. Sha, H. Aochi, T. Chikyow, INVESTIGATION OF THIN-FILM NI/SINGLE-CRYSTAL SIC INTERFACE REACTION, J. Appl. Phys. 62 (1987) 3747-3750.
DOI: 10.1063/1.339259
Google Scholar
[18]
E. Kurimoto, H. Harima, T. Toda, M. Sawada, M. Iwami, S. Nakashima, Raman study on the Ni/SiC interface reaction, J. Appl. Phys. 91 (2002) 10215-10217.
DOI: 10.1063/1.1473226
Google Scholar
[19]
P.S. Lee, D. Mangelinck, K.L. Pey, Z.X. Shen, J. Ding, T. Osipowicz, A. See, Micro-Raman spectroscopy investigation of nickel silicides and nickel (platinum) silicides, Electrochemical and Solid State Letters 3 (2000) 153-155.
DOI: 10.1149/1.1390986
Google Scholar
[20]
Y. Jung, J. Kim, Formation of Ni-Silicide at the Interface of Ni/4H-SiC, J. Electrochem. Soc. 158 (2011) H551-H553.
DOI: 10.1149/1.3567531
Google Scholar
[21]
L. Wan, X. Zhang, B. Tang, Y. Ren, X. Cheng, D. Xu, H. Luo, Y. Huang, Effects of Laser in situ annealing on crystal quality of NiSi film grown on Si(001) substrate, Thin Solid Films 518 (2010) 3646-3649.
DOI: 10.1016/j.tsf.2009.09.084
Google Scholar
[22]
L. Wan, B. Tang, X. Cheng, Y. Ren, X. Zhang, D. Xu, H. Luo, Y. Huang, Raman active modes of NiSi crystal, Physica B: Condensed Matter 404 (2009) 2324-2326.
DOI: 10.1016/j.physb.2009.04.031
Google Scholar
[23]
L. Wan, Y. Ren, B. Tang, X. Cheng, X. Zhang, D. Xu, H. Luo, Y. Huang, Polarized Raman spectroscopy study of NiSi film grown on Si(001) substrate, Appl. Phys. A 97 (2009) 693.
DOI: 10.1007/s00339-009-5295-y
Google Scholar
[24]
F.F. Zhao, J.Z. Zheng, Z.X. Shen, T. Osipowicz, W.Z. Gao, L.H. Chan, Thermal stability study of NiSi and NiSi2 thin films, Microelectron. Eng. 71 (2004) 104-111.
DOI: 10.1016/j.mee.2003.08.010
Google Scholar
[25]
K. Toman, The structure of Ni2Si, Acta Crystallogr. 5 (1952) 329-331.
Google Scholar
[26]
G. Honjo, On the Anomalous Structures of Silicon Carbide, J. Phys. Soc. Jpn. 4 (1949) 352-352.
DOI: 10.1143/jpsj.4.352
Google Scholar
[27]
A.V. Kuchuk, P. Borowicz, M. Wzorek, M. Borysiewicz, R. Ratajczak, K. Golaszewska, E. Kaminska, V. Kladko, A. Piotrowska, Ni-Based Ohmic Contacts to n-Type 4H-SiC: The Formation Mechanism and Thermal Stability, Adv. Condens. Matter Phys 2016 (2016) 9273702.
DOI: 10.1155/2016/9273702
Google Scholar
[28]
S.K. Donthu, D.Z. Chi, S. Tripathy, A.S.W. Wong, S.J. Chua, Micro-Raman spectroscopic investigation of NiSi films formed on BF2+-, B+- and non-implanted (100)Si substrates, Appl. Phys. A 79 (2004) 637-642.
DOI: 10.1007/s00339-002-2067-3
Google Scholar
[29]
I.P. Nikitina, K.V. Vassilevski, N.G. Wright, A.B. Horsfall, A.G. O'Neill, C.M. Johnson, Formation and role of graphite and nickel silicide in nickel based ohmic contacts to n-type silicon carbide, J. Appl. Phys. 97 (2005) 7.
DOI: 10.1063/1.1872200
Google Scholar
[30]
P. Venezuela, M. Lazzeri, F. Mauri, Theory of double-resonant Raman spectra in graphene: Intensity and line shape of defect-induced and two-phonon bands, Physical Review B 84 (2011) 25.
DOI: 10.1103/physrevb.84.035433
Google Scholar
[31]
J. Wu, H. Xu, Z. Jin, Raman Spectroscopy of Graphene, Acta Chim. Sinica 72 (2014) 301-318.
Google Scholar
[32]
S.K. Chang, Y.J. Kim, J.Y. Lee, K.K. Choi, Thermal stability study of Ni-Si silicide films on Ni/4H-SiC contact by in-situ temperature-dependent sheet resistance measurement, Jpn. J. Appl. Phys. 58 (2019) 7.
DOI: 10.7567/1347-4065/ab25ba
Google Scholar
[33]
T. Ohyanagi, Y. Onose, A. Watanabe, Ti∕Ni bilayer Ohmic contact on 4H-SiC, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 26 (2008) 1359-1362.
DOI: 10.1116/1.2949116
Google Scholar
[34]
H.L. Yu, X.F. Zhang, H.J. Shen, Y.D. Tang, Y. Bai, Y.D. Wu, K. Liu, X.Y. Liu, Thermal stability of Ni/Ti/Al ohmic contacts to p-type 4H-SiC, J. Appl. Phys. 117 (2015) 025703.
DOI: 10.1063/1.4905832
Google Scholar
[35]
A. Virshup, L.M. Porter, D. Lukco, K. Buchholt, L. Hultman, A.L. Spetz, Investigation of Thermal Stability and Degradation Mechanisms in Ni-Based Ohmic Contacts to n-Type SiC for High-Temperature Gas Sensors, J. Electron. Mater. 38 (2009) 569-573.
DOI: 10.1007/s11664-008-0609-y
Google Scholar
[36]
J. Roger, F. Audubert, Y. Le Petitcorps, Thermal reaction of SiC films with Mo, Re and Mo-Re alloy, J. Alloys Compd. 475 (2009) 635-642.
DOI: 10.1016/j.jallcom.2008.07.141
Google Scholar