Reaction Kinetics Investigation of Ni Ohmic Contacts on N-Type 4H-SiC

Article Preview

Abstract:

Investigation of the reaction kinetics between Ni film and 4H-SiC substrate at temperatures which are usually used for ohmic contacts formation provides valuable insights into the studies on fundamental properties of ohmic contacts to 4H-SiC, which are limiting the switching speed, energy efficiency and high-temperature thermal stability of SiC MOSFETs. High Resolution Scanning Electron Microscope (HRSEM) and Raman spectroscopy were used to elaborately characterize the interfacial reaction products under various annealing conditions and to assess the thicknesses of reaction diffusion layers. The square of reaction layer thicknesses versus time followed parabolic law and the apparent active energy of interfacial reaction was derived as 1.5 eV (145 kJ/mol). For Raman spectra, the intensity ratio of two Raman peaks for each nickel silicide detected varied monotonically with temperature in the same trend, indicating that crystal quality of nickel silicide film was improved with annealing temperature rising at micron scale. The red-shift of Ni2Si peak locations at about 140 cm-1 with temperature was suggestive of the polycrystalline Ni2Si film with weaker stress/strain status. Moreover, the in-plane size of graphite cluster aggregating at top surface increased with annealing temperature rising until about 1000°C, which is detrimental to the ohmic contacts from the perspective of device applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

139-147

Citation:

Online since:

July 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Kimoto, Material science and device physics in SiC technology for high-voltage power devices, Jpn. J. Appl. Phys. 54 (2015).

DOI: 10.7567/jjap.54.040103

Google Scholar

[2] H. Xu, C. Wan, J.-P. Ao, Reliability of 4H-SiC (0001) MOS Gate Oxide by NO Post-Oxide-Annealing, Mater. Sci. Forum (2019).

DOI: 10.4028/www.scientific.net/msf.954.109

Google Scholar

[3] H. Xu, C. Wan, J.-P. Ao, The Correlation between the Reduction of Interface State Density at the SiO2/SiC Interface and the NO Post-oxide-annealing Conditions, Mater. Sci. Forum (2019).

DOI: 10.4028/www.scientific.net/msf.954.104

Google Scholar

[4] H.L. Yu, X.F. Zhang, H.J. Shen, Y.D. Tang, Y. Bai, Y.D. Wu, K. Liu, X.Y. Liu, Thermal stability of Ni/Ti/Al ohmic contacts to p-type 4H-SiC, J. Appl. Phys. 117 (2015) 8.

DOI: 10.1063/1.4905832

Google Scholar

[5] X.F. Zhang, Y.D. Tang, H.J. Shen, Y. Bai, R.B. Huo, W.W. Wang, S. Liu, Ieee, STUDY ON SIMULTANEOUS FORMATION OF OHMIC CONTACTS ON p- AND n- TYPE 4H-SiC USING Ni/Ti/Al TERNARY SYSTEM, Ieee, New York, 2014.

DOI: 10.1109/icsict.2014.7021382

Google Scholar

[6] F. Laariedh, M. Lazar, P. Cremillieu, J. Penuelas, J.L. Leclercq, D. Planson, The role of nickel and titanium in the formation of ohmic contacts on p-type 4H-SiC, Semicond. Sci. Technol. 28 (2013) 6.

DOI: 10.1088/0268-1242/28/4/045007

Google Scholar

[7] Z. Zhang, J. Teng, W.X. Yuan, F.F. Zhang, G.H. Chen, Kinetic study of interfacial solid state reactions in the Ni/4H–SiC contact, Appl. Surf. Sci. 255 (2009) 6939-6944.

DOI: 10.1016/j.apsusc.2009.03.018

Google Scholar

[8] S. Cichoň, P. Macháč, B. Barda, V. Machovič, P. Slepička, Raman study of Ni and Ni silicide contacts on 4H– and 6H–SiC, Thin Solid Films 520 (2012) 4378-4388.

DOI: 10.1016/j.tsf.2012.02.008

Google Scholar

[9] B. Barda, P. Macháč, S. Cichoň, V. Machovič, M. Kudrnová, A. Michalcová, J. Siegel, Origin of ohmic behavior in Ni, Ni2Si and Pd contacts on n-type SiC, Appl. Surf. Sci. 257 (2010) 414-422.

DOI: 10.1016/j.apsusc.2010.07.003

Google Scholar

[10] S. Liu, Z. He, L. Zheng, B. Liu, F. Zhang, L. Dong, L. Tian, Z. Shen, J. Wang, Y. Huang, Z. Fan, X. Liu, G. Yan, W. Zhao, L. Wang, G. Sun, F. Yang, Y. Zeng, The thermal stability study and improvement of 4H-SiC ohmic contact, Appl. Phys. Lett. 105 (2014) 122106.

DOI: 10.1063/1.4896320

Google Scholar

[11] D. Bae, G. Ahn, C. Jeong, K. Kim, Ni/W/Ni ohmic contacts for both n- and p-type 4H-SiC, Electrical Engineering 100 (2018) 2431-2437.

DOI: 10.1007/s00202-018-0711-y

Google Scholar

[12] J.R. Nicholls, S. Dimitrijev, Regression Model for the Specific Contact Resistance of SiC Ohmic Contacts, IEEE Transactions on Semiconductor Manufacturing 34 (2021) 493-499.

DOI: 10.1109/tsm.2021.3108460

Google Scholar

[13] A. Kuchuk, P. Borowicz, M. Wzorek, M. Borysiewicz, R. Ratajczak, K. Golaszewska, E. Kaminska, V. Kladko, A. Piotrowska, Ni-Based Ohmic Contacts to n-Type 4H-SiC: The Formation Mechanism and Thermal Stability, Adv. Condens. Matter Phys 2016 (2016) 26 pages.

DOI: 10.1155/2016/9273702

Google Scholar

[14] T. Fujimura, S.I. Tanaka, In-situ high temperature X-ray diffraction study of Ni/SiC interface reactions, Journal of Materials Science 34 (1999) 235-239.

Google Scholar

[15] Y. Hoshino, S. Matsumoto, T. Nakada, Y. Kido, Interfacial reactions between ultra-thin Ni-layer and clean 6H-SiC(0001) surface, Surf. Sci. 556 (2004) 78-86.

DOI: 10.1016/j.susc.2004.03.027

Google Scholar

[16] Y. Hoshino, O. Kitamura, T. Nakada, Y. Kido, Structure change of ultra-thin Ni-deposited 6H-SiC(0001)-root 3-x root 3-surface by post-annealing, Surf. Sci. 539 (2003) 14-20.

DOI: 10.1016/s0039-6028(03)00701-5

Google Scholar

[17] I. Ohdomari, S. Sha, H. Aochi, T. Chikyow, INVESTIGATION OF THIN-FILM NI/SINGLE-CRYSTAL SIC INTERFACE REACTION, J. Appl. Phys. 62 (1987) 3747-3750.

DOI: 10.1063/1.339259

Google Scholar

[18] E. Kurimoto, H. Harima, T. Toda, M. Sawada, M. Iwami, S. Nakashima, Raman study on the Ni/SiC interface reaction, J. Appl. Phys. 91 (2002) 10215-10217.

DOI: 10.1063/1.1473226

Google Scholar

[19] P.S. Lee, D. Mangelinck, K.L. Pey, Z.X. Shen, J. Ding, T. Osipowicz, A. See, Micro-Raman spectroscopy investigation of nickel silicides and nickel (platinum) silicides, Electrochemical and Solid State Letters 3 (2000) 153-155.

DOI: 10.1149/1.1390986

Google Scholar

[20] Y. Jung, J. Kim, Formation of Ni-Silicide at the Interface of Ni/4H-SiC, J. Electrochem. Soc. 158 (2011) H551-H553.

DOI: 10.1149/1.3567531

Google Scholar

[21] L. Wan, X. Zhang, B. Tang, Y. Ren, X. Cheng, D. Xu, H. Luo, Y. Huang, Effects of Laser in situ annealing on crystal quality of NiSi film grown on Si(001) substrate, Thin Solid Films 518 (2010) 3646-3649.

DOI: 10.1016/j.tsf.2009.09.084

Google Scholar

[22] L. Wan, B. Tang, X. Cheng, Y. Ren, X. Zhang, D. Xu, H. Luo, Y. Huang, Raman active modes of NiSi crystal, Physica B: Condensed Matter 404 (2009) 2324-2326.

DOI: 10.1016/j.physb.2009.04.031

Google Scholar

[23] L. Wan, Y. Ren, B. Tang, X. Cheng, X. Zhang, D. Xu, H. Luo, Y. Huang, Polarized Raman spectroscopy study of NiSi film grown on Si(001) substrate, Appl. Phys. A 97 (2009) 693.

DOI: 10.1007/s00339-009-5295-y

Google Scholar

[24] F.F. Zhao, J.Z. Zheng, Z.X. Shen, T. Osipowicz, W.Z. Gao, L.H. Chan, Thermal stability study of NiSi and NiSi2 thin films, Microelectron. Eng. 71 (2004) 104-111.

DOI: 10.1016/j.mee.2003.08.010

Google Scholar

[25] K. Toman, The structure of Ni2Si, Acta Crystallogr. 5 (1952) 329-331.

Google Scholar

[26] G. Honjo, On the Anomalous Structures of Silicon Carbide, J. Phys. Soc. Jpn. 4 (1949) 352-352.

DOI: 10.1143/jpsj.4.352

Google Scholar

[27] A.V. Kuchuk, P. Borowicz, M. Wzorek, M. Borysiewicz, R. Ratajczak, K. Golaszewska, E. Kaminska, V. Kladko, A. Piotrowska, Ni-Based Ohmic Contacts to n-Type 4H-SiC: The Formation Mechanism and Thermal Stability, Adv. Condens. Matter Phys 2016 (2016) 9273702.

DOI: 10.1155/2016/9273702

Google Scholar

[28] S.K. Donthu, D.Z. Chi, S. Tripathy, A.S.W. Wong, S.J. Chua, Micro-Raman spectroscopic investigation of NiSi films formed on BF2+-, B+- and non-implanted (100)Si substrates, Appl. Phys. A 79 (2004) 637-642.

DOI: 10.1007/s00339-002-2067-3

Google Scholar

[29] I.P. Nikitina, K.V. Vassilevski, N.G. Wright, A.B. Horsfall, A.G. O'Neill, C.M. Johnson, Formation and role of graphite and nickel silicide in nickel based ohmic contacts to n-type silicon carbide, J. Appl. Phys. 97 (2005) 7.

DOI: 10.1063/1.1872200

Google Scholar

[30] P. Venezuela, M. Lazzeri, F. Mauri, Theory of double-resonant Raman spectra in graphene: Intensity and line shape of defect-induced and two-phonon bands, Physical Review B 84 (2011) 25.

DOI: 10.1103/physrevb.84.035433

Google Scholar

[31] J. Wu, H. Xu, Z. Jin, Raman Spectroscopy of Graphene, Acta Chim. Sinica 72 (2014) 301-318.

Google Scholar

[32] S.K. Chang, Y.J. Kim, J.Y. Lee, K.K. Choi, Thermal stability study of Ni-Si silicide films on Ni/4H-SiC contact by in-situ temperature-dependent sheet resistance measurement, Jpn. J. Appl. Phys. 58 (2019) 7.

DOI: 10.7567/1347-4065/ab25ba

Google Scholar

[33] T. Ohyanagi, Y. Onose, A. Watanabe, Ti∕Ni bilayer Ohmic contact on 4H-SiC, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 26 (2008) 1359-1362.

DOI: 10.1116/1.2949116

Google Scholar

[34] H.L. Yu, X.F. Zhang, H.J. Shen, Y.D. Tang, Y. Bai, Y.D. Wu, K. Liu, X.Y. Liu, Thermal stability of Ni/Ti/Al ohmic contacts to p-type 4H-SiC, J. Appl. Phys. 117 (2015) 025703.

DOI: 10.1063/1.4905832

Google Scholar

[35] A. Virshup, L.M. Porter, D. Lukco, K. Buchholt, L. Hultman, A.L. Spetz, Investigation of Thermal Stability and Degradation Mechanisms in Ni-Based Ohmic Contacts to n-Type SiC for High-Temperature Gas Sensors, J. Electron. Mater. 38 (2009) 569-573.

DOI: 10.1007/s11664-008-0609-y

Google Scholar

[36] J. Roger, F. Audubert, Y. Le Petitcorps, Thermal reaction of SiC films with Mo, Re and Mo-Re alloy, J. Alloys Compd. 475 (2009) 635-642.

DOI: 10.1016/j.jallcom.2008.07.141

Google Scholar