Factors Affecting Bias Temperature Instability in 4H-SiC MOS Capacitors

Article Preview

Abstract:

The threshold voltage of 4H-SiC metal-oxide-semiconductor field-effect transistors (MOSFETs) show instability during normal operation, especially after bias temperature stress (BTS), and this phenomenon is called bias temperature instability (BTI). In this work, to study the factors affecting threshold voltage (Vth) instability of SiC MOSFETs, flat-band voltage (Vfb) instability of 4H-SiC metal-oxide-semiconductor (MOS) capacitors is discussed instead. Some factors, including the polarity of gate bias stress, stress time, and stress temperature, are analyzed by performing one-way bias stress C-V measurements in the devices. Firstly, positive bias stress leads to a positive Vfb shift, and negative bias stress leads to a negative one. Moreover, the Vfb shift appears to exhibit a linear relationship with log (stress time). Furthermore, the Vfb shift decreases over the temperature range of 225 K to 400 K, but slightly increases at 475 K. Finally, the Vfb stability of the MOS devices fabricated by 1200 °C NO post-oxidation annealing (POA) and those fabricated by 1250 °C NO POA is similar.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

133-138

Citation:

Online since:

July 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Katsu, T. Hosoi, Y. Nanen, T. Kimoto, T. Shimura, and H. Watanabe, Impact of NO annealing on flatband voltage instability due to charge trapping in SiС MOS devices, Mater. Sci. Forum 858 (2016) 599-602.

DOI: 10.4028/www.scientific.net/msf.858.599

Google Scholar

[2] C. Yang, Z. Gu, Z. Yin, F. Qin, and D. Wang, Interfacial traps and mobile ions induced flatband voltage instability in 4H-SiC MOS capacitors under bias temperature stress, J. Phys. D: Appl. Phys. 52 (2019) 405103.

DOI: 10.1088/1361-6463/ab2faf

Google Scholar

[3] C. Yang, S. Wei, and D. Wang, Bias temperature instability in SiC metal oxide semiconductor devices, J. Phys. D: Appl. Phys. 54 (2021) 123002.

DOI: 10.1088/1361-6463/abcd5e

Google Scholar

[4] A. J. Lelis, R. Green, D. B. Habersat, and M. El, Basic Mechanisms of Threshold-Voltage Instability and Implications for Reliability Testing of SiC MOSFETs, IEEE Trans. Electron Devices 62 (2015) 316-23.

DOI: 10.1109/ted.2014.2356172

Google Scholar

[5] D. B. Habersat, and A. J. Lelis, Improved observation of SiC/SiO2 oxide charge traps using MOS CV, Mater. Sci. Forum 679 (2011) 366-9.

DOI: 10.4028/www.scientific.net/msf.679-680.366

Google Scholar

[6] M. Gurfinkel, H. D. Xiong, K. P. Cheung, J. S. Suehle, J. B. Bernstein, Y. Shapira, A. J. Lelis, D. Habersat, and N. Goldsman, Characterization of transient gate oxide trapping in SiC MOSFETs using fast I–V techniques, IEEE Trans. Electron Devices 55 (2008) 2004-12.

DOI: 10.1109/ted.2008.926626

Google Scholar

[7] A. J. Lelis, D. B. Habersat, R. Green, and N. Goldsman, Two-way tunneling model of oxide trap charging and discharging in SiC MOSFETs, Mater. Sci. Forum 717 (2012) 465-8.

DOI: 10.4028/www.scientific.net/msf.717-720.465

Google Scholar

[8] G. Rescher, G. Pobegen, T. Aichinger, and T. Grasser, On the subthreshold drain current sweep hysteresis of 4H-SiC nMOSFETs, 2016 IEEE International Electron Devices Meeting (IEDM) (2016) 10.8.1-.8.4.

DOI: 10.1109/iedm.2016.7838392

Google Scholar

[9] C. Hu, Modern semiconductor devices for integrated circuits, Prentice Hall, New Jersey, 2010.

Google Scholar

[10] J. Cooper, J. A., Advances in SiC MOS technology, Phys. Status Solidi A 162 (1997) 305-20.

Google Scholar

[11] R. Green, A. Lelis, and D. Habersat, Threshold-voltage bias-temperature instability in commercially-available SiC MOSFETs, Jpn. J. Appl. Phys 55 (2016) 04EA3.

DOI: 10.7567/jjap.55.04ea03

Google Scholar

[12] S. Zhu, A. Nakajima, T. Ohashi, and H. Miyake, Interface trap and oxide charge generation under negative bias temperature instability of p-channel metal-oxide-semiconductor field-effect transistors with ultrathin plasma-nitrided SiON gate dielectrics, J. Appl. Phys. 98 (2005) 114504.

DOI: 10.1063/1.2138372

Google Scholar

[13] A. J. Lelis, T. R. Oldham, H. E. Boesch, and F. B. Mclean, The nature of the trapped hole annealing process, IEEE Trans. Nucl. Sci. 36 (1989) 1808-15.

DOI: 10.1109/23.45373

Google Scholar