Towards Making SiC ICs Durable and Accessible for Use in the Most Extreme Environments (Including Venus)

Article Preview

Abstract:

The prospects for beneficial application of integrated circuit (IC) capabilities in ambient environments above 450 °C have been significantly improved by recent long-term demonstrations of SiC chips and packaging by NASA Glenn Research Center. This invited paper reviews and updates development of durable SiC IC technology aspects relevant to engineering infusion into beneficial applications, including the first long-duration low-mass Venus lander missions

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1004)

Pages:

1057-1065

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.D. Cressler, H. A. Mantooth, Extreme Environment Electronics (CRC Press, 2013).

Google Scholar

[2] P.G. Neudeck, R.S. Okojie, L.Y. Chen, Proc. IEEE 90 (2002) 1065.

Google Scholar

[3] D.B. Slater et al., IEEE Device Res. Conf. (1995) 100.

Google Scholar

[4] M. Gaevski et al., IMAPS Int. Conf. High Temperature Electronics (2014) 84.

Google Scholar

[5] L. Lanni et al., IEEE Electron Device Lett. 34 (2013) 1091.

Google Scholar

[6] C.P. Chen et al., IMAPS Int. Conf. High Temperature Electronics (2014) 72.

Google Scholar

[7] C.W. Soong et al., IEEE Electron Device Lett. 33 (2012) 1369.

Google Scholar

[8] P.G. Neudeck et al., Phys. Status Solidi A 206 (2009) 2329.

Google Scholar

[9] M.J. Krasowski, U.S. Patent 7,688,117. (2010).

Google Scholar

[10] D.J. Spry et al., Materials Science Forum 858 (2016) 908.

Google Scholar

[11] P.G. Neudeck et al., IEEE Electron Device Lett. 37 (2016) 625.

Google Scholar

[12] D.J. Spry, D. Lukco, J. Electronic Materials 41 (2012) 915.

Google Scholar

[13] L.Y. Chen et al., IMAPS Int. Conf. High Temperature Electronics (2016) 66.

Google Scholar

[14] P.G. Neudeck et al., IMAPS Int. Conf. High Temperature Electronics (2018) 71.

Google Scholar

[15] D.J. Spry et al., Materials Science Forum 828 (2016) 1112.

Google Scholar

[16] https://www.wolfspeed.com.

Google Scholar

[17] P.G. Neudeck, M.J. Krasowski, Electrochemical Soc. Trans. 41(8) (2011) 163.

Google Scholar

[18] P.G. Neudeck, D.J. Spry, L. Chen, IMAPS Int. Conf. High Temperature Electronics (2016) 263.

Google Scholar

[19] P.G. Neudeck, D.J. Spry, L. Chen, Materials Science Forum 828 (2016) 1112.

Google Scholar

[20] P.G. Neudeck et al., Materials Science Forum 963 (2019) 813.

Google Scholar

[21] P.G. Neudeck, Materials Science Forum 924 (2018) 962.

Google Scholar

[22] https://sic.grc.nasa.gov/jfetictechguide/.

Google Scholar

[23] https://www.ozarkic.com.

Google Scholar

[24] https://technology.grc.nasa.gov/partnering.

Google Scholar

[25] D.J. Spry et al., US Patent 10,256,202. (2019).

Google Scholar

[26] P.G. Neudeck et al., IEEE J. Electron Devices Soc. 7 (2018) 100.

Google Scholar

[27] P.G. Neudeck et al., IEEE Electron Device Lett. 38 (2017) 1082.

Google Scholar

[28] J.M. Lauenstein et al., to appear in Proc. IEEE Radiation Effects Data Workshop (2019).

Google Scholar

[29] D.J. Spry et al., IMAPS Int. Conf. High Temperature Electronics (2016) 249.

Google Scholar

[30] P.G. Neudeck et al., Materials Science Forum 576 (2017) 567.

Google Scholar

[31] D.J. Spry, P.G. Neudeck, C.W. Chang, ICSCRM 2019 We-1B-03 (2019).

Google Scholar

[32] J.E. Tomayko, A. Kent, J.G. Williams, Computers in Spaceflight: The NASA Experience Part II: Computers On Board Unmanned Spacecraft, in Encyclopedia of Computer Science and Technology, vol. 13, Marcel Dekker, New York, 1988, pp.135-204.

Google Scholar

[33] P. Alexandrov et al., IMAPS Int. Conf. High Temperature Electronics (2018) 79.

Google Scholar

[34] M. Nakajima, M. Kaneko, T. Kimoto, IEEE Electron Device Lett. 40 (2019) 866.

Google Scholar

[35] M.A. Bullock et al., The Atmosphere and Climate of Venus, in Comparative Climatology of Terrestrial Planets, U. Arizona Press, Tuscon, AZ, USA, 2013, pp.19-54.

Google Scholar

[36] E. Kowala et al., Extreme Environment Technologies for Future Space Science Missions, NASA Jet Propulsion Laboratory, Pasadena, CA, USA, 2007, Report JPL D-32832.

Google Scholar

[37] T. Kremic et al., 48th Lunar and Planetary Science Conference, (2017) https://www.hou.usra.edu/meetings/lpsc2017/pdf/2986.pdf.

Google Scholar

[38] L. Chen et al., IMAPS Int. Conf. High Temperature Electronics (2018) 15.

Google Scholar

[39] D. Lukco et al., Earth and Space Science 5 (2018) 270.

Google Scholar