[1]
J. G. Kassakian, M. F. Schlecht, and G. C. Verghese, Principles of Power Electronics,, ISBN 4-526-04065-7, Sep. (1997).
Google Scholar
[2]
W. McMurray, Optimum Snubbers for Power Semiconductors,, IEEE Transactions on Industry Applications, 1972, pp.593-600.
DOI: 10.1109/tia.1972.349788
Google Scholar
[3]
W. McMurray, Selection of Snubbers and Clamps to Optimize the Design of Transistor Switching Converters,, IEEE Trans. Industry Applications 16 (4):513-523, (1980).
DOI: 10.1109/tia.1980.4503823
Google Scholar
[4]
H. Ohashi, Snubber Circuit for High-Power Gate Trun-Off Thyristors,, IEEE Trans. Industry Application 19 (4):655-664 (1983).
DOI: 10.1109/tia.1983.4504269
Google Scholar
[5]
F. C. Zach, K. H. Kaiser, J. W. Kolar, and F. J. Haselsteiner, New Lossless Turn-On and Turn-Off (Snubber) Networks for Inverters, Including Circuits for Blocking Voltage Limitation,, IEEE Trans. Power Electronics 1 (2): 65-75 (1986).
DOI: 10.1109/tpel.1986.4766285
Google Scholar
[6]
W. McMurry, Efficient Snubbers for Voltage-Source GTO Inverters,, IEEE Trans. Power Electronics 2 (3): 264-272 (1987).
DOI: 10.1109/tpel.1987.4766368
Google Scholar
[7]
C. W. Lee and S. B. Park, Design of a Thristor Snubber circuit by Considering the Reverse Recovery Process,, IEEE Trans. Power Electronics 3 (4): 440-446 (1988).
DOI: 10.1109/63.17965
Google Scholar
[8]
R. Hata, and S. Nishiyama, The Effect of Built-in CR Snubber Capacitor into the Power Module,, in proceedings of the International Power Electronics Conference (IPEC-Niigata 2018 ECCE Asia), (2018).
DOI: 10.23919/ipec.2018.8507733
Google Scholar
[9]
R. Parvari, M. Zarghani, and S. Koboli, RCD snubber design based on reliability consideration: A case study for thermal balancing in power electronics converters,, Microelectronics Reliability 88-90 (2018) 1311-1315.
DOI: 10.1016/j.microrel.2018.06.072
Google Scholar
[10]
M. Levinshtein et al., Breakdown phenomena in semiconductors and semiconductor devices, World Scientific, 2005, p.47–50.
Google Scholar
[11]
A. Konstantinov, H. Pham, B. Lee, K. S. Park, B. Kang, F. Allerstam, T. Neyer, Investigation of Avalanche ruggedness of 650 V Schottky-barrier rectifiers,, Solid State Electronics 148 (2018) 51-57.
DOI: 10.1016/j.sse.2018.07.011
Google Scholar
[12]
K. Koseki, and Y. Tanaka, Surge Voltage Absorption by a Silicon Carbide Avalanche-Diode with PN structure,, in proceedings of the International Power Electronics Conference (IPEC-Niigata 2018 ECCE Asia), (2018).
DOI: 10.23919/ipec.2018.8507891
Google Scholar
[13]
M. Yamamoto, K. Koseki, and Y. Tanaka, Fabrication of a High-Voltage SiC Avalanche Diode with a Superior Voltage Clamp property,, in proceedings of the 31st IEEE International Symposium on Power Semiconductor Devices and ICs, (2019).
DOI: 10.1109/ispsd.2019.8757636
Google Scholar