Dislocations Analysis on Implanted (p-Type and n-Type) 4H-SiC Epi-Layer by KOH Molten Etching

Article Preview

Abstract:

In this work the effect of the ion implantation on the dislocations structure of the 4H-SiC epilayer after the KOH etching has been investigated. The study was conducted using both Aluminum (Al) and Phosphorous (P) species for p-type and n-type, respectively. The ion implantations of Al and P were carried out at different energies (30–200 keV) to achieve 300 nm thick acceptor box profiles with a concentration of about 1020 at/cm3. The implanted samples were annealed at high temperatures. With sequential sacrificial and stopping layer both species has been implanted on the same sample. Morphological charaterization of the samples (optical microscope and SEM) shown different structural modification of the dislocations (experically TED) after the KOH etching of the samples.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1004)

Pages:

408-413

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Matsunami, T. Kimoto, Materials Science and Engineering R20, 125–166 (1997).

Google Scholar

[2] Baliga, B.J., IEEE Transactions on Electron Devices 43(10), 1717, (1996).

Google Scholar

[3] H. Matsunami, Jpn. J. Appl. Phys., Vol. 43, No. 10 (2004).

Google Scholar

[4] M. Skowronski and S. Ha, J. Appl. Phys. 99, 011101 (2006).

Google Scholar

[5] Chihiro Kawahara , Jun Suda, and Tsunenobu Kimoto Japanese Journal of Applied Physics. 53 020304 (2014).

Google Scholar

[6] Å. Persson, L. Hultman, M. S. Janson, A. Hallén, and R. Yakimova, J. Appl. Phys. 93, 9395 (2003).

Google Scholar

[7] H. Tsuchida, I. Kamata, M. Nagano, L. Storasta, and T. Miyanagi, Mater. Sci. Forum 556–557, 271 (2007).

DOI: 10.4028/www.scientific.net/msf.556-557.271

Google Scholar

[8] M. Nagano,_ H. Tsuchida, T. Suzuki, T. Hatakeyama, J. Senzaki, and K. Fukuda. J. Appl. Phys. 108, 013511 (2010).

Google Scholar

[9] S. Leone, H. Pedersen, A. Henry, O. Kordina, E. Janze. Journal of Crystal Growth 311 (2009) 3265–3272.

Google Scholar

[10] M. Spera, D. Corso, S. Di Franco, G. Greco, A. Severino, P. Fiorenza, F. Giannazzo, F. Roccaforte, Materials Science in Semiconductor Processing 93 (2019) 274–279 275.

DOI: 10.1016/j.mssp.2019.01.019

Google Scholar

[11] A. Frazzetto, F. Giannazzo, R. Lo Nigro, V. Raineri, F. Roccaforte, , J. Phys. D: Appl. Phys. 44 (2011) 255302.

DOI: 10.1088/0022-3727/44/25/255302

Google Scholar

[12] H.M. Ayedh, R. Nipoti, A. Hallen, B.G. Svensson, Materials Science Forum 858 (2016) 414–417.

Google Scholar

[13] R. Anzalone, N. Piluso, A. Severino, S. Lorenti, G. Arena, S. Coffa, Materials Science Forum, 963, 276-279 (2019).

DOI: 10.4028/www.scientific.net/msf.963.276

Google Scholar

[14] S. Ha, N. T. Nufher, G. S. Rohrer, M. D. Graef and M. Skowronski, J. Eletron. Mater. 29, L5 (2000).

Google Scholar

[15] B. Kallinger, S.Polster, P.Berwian, J.Friedrich, G.Muller, A.N. Danilewsky, A. Wehrhahn, A.-D.Weber, Journal of Crystal Growth 314 (2011) 21–29.

DOI: 10.1016/j.jcrysgro.2010.10.145

Google Scholar