Structural Characterization of a Ga2O3 Epitaxial Layer Grown on a Sapphire Substrate Using Cross-Sectional and Plan-View TEM/STEM Analysis

Article Preview

Abstract:

Ga2O3 is a hopeful wide-band-gap semiconductor material for a next-generation power semiconductor. We performed crystal structure analysis on Ga2O3 film on sapphire substrate using cross-sectional transmission electron microscope (TEM) and atomic resolution plan-view scanning transmission electron microscopy (STEM). The TEM analysis suggested that the main Ga2O3 film is composed of κ-Ga2O3 or mixed crystal of κ-Ga2O3 and ε-Ga2O3. But, it is difficult to distinguish these two possibilities only by cross-sectional TEM. Contrast modulation of Ga atomic columns in the atomic resolution HAADF-STEM image showed that the main part of the Ga2O3 film was κ-Ga2O3 monolayer grown along the c-axis direction, and twins are formed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1004)

Pages:

505-511

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Go, Z. Wu, P. Li, H. Liu, X, Guo, H. Yan, G. Wang, C. Sun, L. Li and W. Tang, Opt. Mater. Express, 4(5), 1067-1076 (2014).

Google Scholar

[2] H. He, R. Orlando, M. A. Blanco and R. Pandey, Phys. Rev. B 74, 195123 (2006).

Google Scholar

[3] M. Orota, H. Ohta and M. Hirano, Appl. Phys. Lett., 77(25), 4166 (2000).

Google Scholar

[4] H. H. Tippins, Phys. Rev. 140, A316-A319 (1965).

Google Scholar

[5] J. Kim, D. Tahara, Y. Miura and B. G. Kim, Appl. Phys. Express, 11, 061101 (2018).

Google Scholar

[6] M. Oda, R. Tokuda, H. Kambara, T. Tanikawa, T. Sasaki and T. Hitora, Appl. Phys. Express,9, 021101(2016).

DOI: 10.7567/apex.9.021101

Google Scholar

[7] M. Higasguwaki, K. Sasaki, A. Kuramata, T. Masui and S. Yamakoshi, Appl. Phys. Lett., 100, 013504 (2013).

Google Scholar

[8] M. Higasguwaki, K. Sasaki, T. Kamimura, M. H. Wong, D. Krishnamurthy, A. Kuramata, T. Masui and S. Yamakoshi, Appl. Phys. Lett., 103, 123511 (2013).

Google Scholar

[9] F. Mezzadri, G. Calestani, F. Boschi, D. Delmonte, M. Bosi and R. Fornari, Inorg. Chem. 55, 12079-12084 (2016).

DOI: 10.1021/acs.inorgchem.6b02244

Google Scholar

[10] Y. Yao, L. A. M. Lyle, J. A. Rokholt, S. Okur, G. S. Tompa, T. Salagaj, N. Sbrockey, R. F. Davis, and L. M. Poter, ECS Trans. 80(7), 191-196 (2017).

DOI: 10.1149/08007.0191ecst

Google Scholar

[11] H. Y. Playford, A. C. Hannon, E. R. Barney and R. I. Walton, Chem. Eur. J. 19, 2803–2813(2013).

Google Scholar

[12] M. Kracht, A. Karg, J. Schörmann, M. Weinhold, D. Zink, F. Michel, M. Rohnke, M. Schowalter, B. Gerken, A. Rosenauer, P. J. Klar, J. Janek, and M. Eickhoff1, Phys. Rev. Appl. 8, 054002 (2017).

DOI: 10.1103/physrevapplied.8.054002

Google Scholar

[13] I. Cora, F. Mezzadri, F. Boschi, M. Bosi, M. Čaplovičová, G. Calestani, I. Dódony,B. Pécz, R. Fornari, Cryst. Eng. Comm. 19, 1509 (2017).

DOI: 10.1039/c7ce00123a

Google Scholar

[14] V. Gottschalch, S. Merker, S. Blaurock, M. Kneiß, U. Teschner, M. Grundmann and H. Krautscheid, J. Cryst. Growth. 510, 76-84. (2019).

DOI: 10.1016/j.jcrysgro.2019.01.018

Google Scholar

[15] S. J. Pearton, J. Yang, P. H. Cary IV, F. Ren, J. Kim, M. J. Tadjer and M. A. Mastro, Appl. Phys. Rev. 5, 011301 (2018).

Google Scholar

[16] Y. Oshima, K. Kawara, T. Shinohe, T. Hitora, M. Kasu and S. Fujita, APL Mater. 7, 022503 (2019).

DOI: 10.1063/1.5051058

Google Scholar