Ray-Tracing Simulation Analysis of Effective Penetration Depths on Grazing Incidence Synchrotron X-Ray Topographic Images of Basal Plane Dislocations in 4H-SiC Wafers

Article Preview

Abstract:

Understanding the depth from which contrast from dislocations is still discernible (the effective penetration depth of the X-rays) in grazing-incidence synchrotron monochromatic beam X-ray topography is of great interest as it enables three-dimensional dislocation configuration analysis and accurate density calculations. To this end, systematic analysis has been performed of topographic and ray-tracing simulated contrast of basal plane dislocations with different Burgers vector and line direction combinations, and a universal method to determine the effective penetration depth based on ray tracing has been developed. This study reveals that the observable dislocation contrast depends on the effective misorientation associated with the dislocation modulated by the photoelectric absorption effect. The dislocations with larger effective misorientation tend to have longer projected length and correspondingly deeper effective penetration depths.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] B. Raghothamachar, M. Dudley, and G. Dhanaraj, X-ray topography techniques for defect characterization of crystals, in: G. Dhanaraj, K. Byrappa, V. Prasad, and M. Dudley (Eds.), Springer Handbook of Crystal Growth, Springer, Berlin, Heidelberg, 2010, p.1425–1451.

DOI: 10.1007/978-3-540-74761-1_42

Google Scholar

[2] M. Dudley, J. Wu, and G.-D. Yao, Nucl. Inst. & Meth. B40/41 (1989) 388-392.

Google Scholar

[3] A. Authier, Adv. X-Ray Anal. 10 (1966) 9-31.

Google Scholar

[4] M. Dudley, X.-R. Huang, and W. Huang, J. Phys. D: Appl. Phys. 32 (1999) A139-A144.

Google Scholar

[5] X.-R. Huang, M. Dudley, M. Vetter, W. Huang, W. Si, and C.-H. Jr Carter, J. Appl. Cryst. 32 (1999) 516-524.

Google Scholar

[6] K. Ishiji, S. Kawado, Y. Hirai, and S. Nagamachi, Jpn. J. Appl. Phys. 56 (2017) 106601.

Google Scholar

[7] H. Peng, T. Ailihumaer, F. Fujie, Z. Chen, B. Raghothamachar, and M. Dudley, J. Appl. Cryst. 54 (2021) 439-443.

Google Scholar

[8] F. Fujie, H. Peng, T. Ailihumaer, B. Raghothamachar, M. Dudley, S. Harada, M. Tagawa, and T. Ujihara, Acta Mater. 208 (2021) 116746.

DOI: 10.1016/j.actamat.2021.116746

Google Scholar

[9] T. Ailihumaer, H. Peng, F. Fujie, B. Raghothamachar, M. Dudley, S. Harada, and T. Ujihara, Mater. Sci. Eng.: B 271 (2021) 115281.

Google Scholar

[10] C. Schneider, W. Rasband, and K. Eliceiri, Nat. Methods 9 (2012) 671-675.

Google Scholar

[11] Q. Cheng, H. Peng, S. Hu, Z. Chen, Y. Liu, B. Raghothamachar, and M. Dudley, to be submitted.

Google Scholar

[12] F. Nabarro, Theory of Crystal Dislocation, Dover ed., New York, (1987).

Google Scholar