Investigations on the Recovery of the Electrical Properties of Smart Cut™-Transferred SiC Thin Film Using SiC-on-Insulator Structures

Article Preview

Abstract:

SiC-on-Insulator (SiCOI) structures fabricated using the Smart Cut™ technique can be of great interest in order to probe the properties of a silicon carbide (SiC) transferred layer, by electrically insulating it from the receiver substrate. In this study, we report the fabrication of such a SiCOI structure using a SiC receiver, as well as its electrical and TEM characterization after high temperature annealing. We highlight a decrease of the transferred layer electrical resistivity with increasing annealing temperature, due to doping reactivation and electron mobility enhancement. After low temperature annealing (1200°C to 1400°C), deep acceptor levels, possibly located in a damaged region near the substrate’s surface, might be responsible of a non negligible electrical compensation. Beyond 1400°C however, the transferred SiC crystal is healed and electron transport is only subjected to shallow nitrogen ionization.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] S. Rouchier et al., Materials Sience Forum, vol. 1062, p.131–135, 2021.

Google Scholar

[2] K. Imakoa et al., UN patent 9 761 749 B2, 2017.

Google Scholar

[3] A. Yi et al., Optical Materials, vol. 107, p.109990, 2020.

Google Scholar

[4] F. Mu and T. Suga, presented at ICEP 2019, Japan, 2019, p.198–199.

Google Scholar

[5] F. Mu et al., Journal of Solid State Sciuence and Technology, vol. 5, no. 9, p.451–456, 2016.

Google Scholar

[6] W. Zhang et al., Micromachines, vol. 12, no. 12, p.1575, 2021.

Google Scholar

[7] W. Schwarzenbach et al., presented at ICSCRM 2022, Davos, Switzerland, 2022.

Google Scholar

[8] E. Cela et al., Defect and Diffusion Forum, vol. 425, p.57–61, 2023.

Google Scholar

[9] B. Kallinger et al., Solid State Phenomena, vol. 342, p.91–98, 2023.

Google Scholar

[10] D. Zhu et al., physica status solidi (a), vol. 220, no. 3, p.2370005, 2023.

Google Scholar

[11] H. Ou et al., Materials, vol. 16, no. 3, Art. no. 3, 2023.

Google Scholar

[12] M. Bruel et al., in 1995 IEEE International SOI Conference Proceedings, 1995, p.178–179.

Google Scholar

[13] L. Di Cioccio et al., Materials Science and Engineering: B, vol. 46, no. 1, p.349–356, 1997.

Google Scholar

[14] X. Zhang et al., Nuc. Inst. Methods Phys. Res. B, vol. 436, p.107–111, (2018)

Google Scholar

[15] Y. Le Tiec, Ph.D. thesis, Science et Génie des Matériaux, INP Grenoble & CEA-Leti, 1998.

Google Scholar

[16] L. Di Cioccio et al., in Wafer Bonding: Applications and Technology (M. Alexe and U. Gösele), Eds., in Springer Series in Materials Science. Springer, 2004, p.263–314.

DOI: 10.1007/978-3-662-10827-7

Google Scholar

[17] E. Hugonnard-Bruyère et al., Materials Siences and Engineering: B, vol. 61–62, p.382–388, 1999.

Google Scholar

[18] F. Letertre et al., Materials Sciences Forum, vol. 433–436, p.813–818, 2003.

Google Scholar

[19] G. Gelineau et al., Materials Science Forum, vol. 1089, p.71–79, 2023.

Google Scholar

[20] C. Ventosa et al., Journal of Applied Physics, vol. 104, no. 12, p.123524, 2008.

Google Scholar

[21] G. Rutsch et al., Journal of Applied Physics, vol. 84, no. 4, p.2062–2064, 1998.

Google Scholar

[22] A. AlQurashi and C. R. Selvakumar, Superlattice Microsctrucures., vol. 118, p.308–318.

Google Scholar

[23] F. Schmid et al., Phys. rev. B, vol. 74, p.245212, 2006.

Google Scholar

[24] B. S. Li et al., Nuc. Inst. Methods Phys. Res. B, vol. 316, no. 239, p.244, 2013.

Google Scholar

[25] N. Daghbouj et al., Acta Materialia, vol. 188, p.609–622, 2020.

Google Scholar

[26] Kimoto, T. and Cooper, J.A., Fundamentals of Silicon Carbide Technology: Growth Characterization Devices and Applications, John Wiley&Sons. 2014.

DOI: 10.1002/9781118313534

Google Scholar

[27] X. Zhou et al., Mat. Sci. Forum, vol. 963 MSF, p.516–5159, 2019.

Google Scholar

[28] M. A. Capano et al., J. Appl. Phys., vol. 87, no. 12, p.8773, 2000.

Google Scholar

[29] J. Pernot, Journal of Applied Physics, vol. 90, 2001.

Google Scholar

[30] W. Götz et al., Journal of Applied Physics, vol. 73, no. 7, p.3332–3338, 1993.

Google Scholar

[31] G. Pensl and W. J. Choyke, Physica B: Condensed Matter, vol. 185, no. 1, p.264–283, 1993.

Google Scholar

[32] H. Li et al., Front. Phys., vol. 9, 2022.

Google Scholar

[33] H. Sako et al., Journal of Applied Physics, vol. 119, no. 13, p.135702, 2016.

Google Scholar

[34] W. Geng et al., J. Semicond., vol. 43, no. 10, p.102801, 2022.

Google Scholar

[35] F. Gendron et al., Appl. Phys. Lett., vol. 67, no. 9, p.1253–1255, 1995.

Google Scholar

[36] W. J. Choyke, H. Matsunami, and G. Pensl, Silicon Carbode: Recent Major Advances, Springer-Verlag., vol. 1. Berlin, Germany: Heidelberg GmbH, 2004.

Google Scholar

[37] M. E. Bathen et al., ournal of. Applied Physics, vol. 127, p.085701, 2020.

Google Scholar