Contrast Factors and Character of Dislocations in Cubic and Hexagonal Crystals

Article Preview

Abstract:

Anisotropic strain broadening of diffraction peaks can be parameterised by dislocation contrast factors. A comprehensive software has been developed and made available through the internet to determine the individual and averaged contrast factors which are also compiled for cubic and hexagonal crystals. Using the theoretical and the measured values of contrast factor the microstructure of the specimen can be characterised in terms of active slip systems, Burgers vector populations, dislocation densities and crystallite size- and size distribution.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 443-444)

Pages:

95-98

Citation:

Online since:

January 2004

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2004 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Ungár and G. Tichy: phys. stat. sol. Vol. 171 (1999), p.425.

Google Scholar

[2] T. Ungár, I. Dragomir, Á. Révész and A. Borbély: J. Appl. Cryst. Vol. 32 (1999), p.992.

Google Scholar

[3] I. C. Dragomir and T. Ungár: J. Powder Diffraction, Vol. 17 (2002), p.104.

Google Scholar

[4] I. C. Dragomir and T. Ungár, J. Appl. Cryst. Vol. 35 (2002), p.556.

Google Scholar

[5] T. Ungár, I. Dragomir-Cernatescu, D. Louër and N. Audebrand: J. Phys. Chem. Solids, Vol. 62 (2001) p. (1935).

Google Scholar

[6] J. Gubicza, I.C. Dragomir, G. Ribárik, Y.T. Zhu, R.Z. Valiev and T. Ungár: J. Mat. Research, submitted (2003).

Google Scholar

[7] P. Scardi and M. Leoni: Acta Cryst. A58 (2002), p.190.

Google Scholar

[8] T. Ungár, P. Martinetto, G. Ribárik, E. Dooryhée, Ph.M. Walter, J. Appl. Phy. Vol. 91 (2002), p.2455.

Google Scholar

[9] A. Borbély, I. C. Dragomir, G. Ribárik and T. Ungár, J. Appl. Cryst. Vol. 36 (2002), p.160.

Google Scholar

[10] M. Wilkens: phys. stat. sol. Vol. 2 (1970), p.359.

Google Scholar

[11] R. W. K. Honeycombe: The Plastic Deformation of Metals (Edw.A. Publ. Ltd., London 1984), p.112.

Google Scholar

[12] P. Klimanek and Jr. R. Kuzel: J. Appl. Cryst. Vol. 21 (1988), p.59.

Google Scholar

[13] Jr. R. Kuzel and P. Klimanek: J. Appl. Cryst. Vol. 21, (1988), p.363.

Google Scholar

[14] Jr. R. Kuzel and P. Klimanek: J. Appl. Cryst. Vol. 22 (1989), p.299.

Google Scholar

[15] I. Groma, T. Ungár and M. Wilkens: J. Appl. Cryst. Vol. 21 (1988), p.47.

Google Scholar

[16] G. Ribárik, T. Ungár and J. Gubicza: J. Appl. Cryst. Vol. 34 (2001), p.669.

Google Scholar

[17] T. Ungár, J. Gubicza, G. Ribárik and A. Borbély: J. Appl. Cryst. Vol. 34 (2001), p.298.

Google Scholar

[18] J. I. Langford, D. Louër and P. Scardi: J. Appl. Cryst. Vol. 33 (2000), p.964.

Google Scholar