Materials Science Forum Vols. 473-474

Paper Title Page

389
Abstract: The thermodynamic analysis of the SiC/Al-Si-Mg system has been performed in order to find the conditions to produce SiC/Al-Si-Mg composite materials with the stable SiC/alloy interface (for both a-SiC and b-SiC) and with the solidification of primary a-Al solid solution. The conditions to avoid the formation of Al4C3 are expressed as function of temperature, and the silicon and magnesium content of the liquid aluminium alloy. It has been shown that to ensure stabilization of (the more stable) b-SiC, lower Si-content is needed and higher working temperature is allowed, compared to the requirements to stabilize (the less stable) a-SiC.
415
421
Abstract: Penetration of model solid particles (polymer, teflon, nylon, alumina) into transparent model liquids (distilled water and aqueous solutions of KI) were recorded by a high speed (500 frames per second) camera, while the particles were dropped from different heights vertically on the still surface of the liquids. In all cases a cavity has been found to form behind the solid particle, penetrating into the liquid. For each particle/liquid combination the critical dropping height has been measured, above which the particle was able to penetrate into the bulk liquid. Based on this, the critical impact particle velocity, and also the critical Weber number of penetration have been established. The critical Weber number of penetration was modelled as a function of the contact angle, particle size and the ratio of the density of solid particles to the density of the liquid.
429
435
447
Abstract: A commercial Al-Mg-Si alloy (Al 6082) was deformed by Equal-Channel Angular Pressing (ECAP) to produce bulk ultrafine-grained microstructure. The crystallite size distribution and the characteristic parameters of the dislocation structure were investigated by X-ray diffraction profile analysis. It was found that the crystallite size decreased and the dislocation density increased during ECAP deformation. The increase of the yield stress of the alloy was related to the increase of the dislocation density using the Taylor model.
453

Showing 61 to 70 of 76 Paper Titles