SiC/SiO2 Interface States: Properties and Models

Article Preview

Abstract:

Properties of defects encountered at the oxidized surfaces of silicon carbide (SiC) suggest their origin to be different from the dangling-bond-type defects commonly observed in the oxidized silicon. Among different models of these SiC/oxide interface states advanced during the past decade, two have received substantial experimental support. This first one is the “carbon cluster” model, which ascribes the traps with energy levels in the SiC bandgap to inclusions of elemental carbon formed during the SiC surface treatment and subsequent oxidation. The second model invokes intrinsic defects of SiO2 to account for the high density of interface states in the energy range close to the conduction band of SiC. Achievements in reducing the SiC/SiO2 defect density are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 483-485)

Pages:

563-568

Citation:

Online since:

May 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. R. Melloch and J. A. Cooper, Jr.: MRS Bull. Vol. 22 (1997), p.42.

Google Scholar

[2] H. Matsunami: Mater. Sci. Forum Vol. 389-393 (2002), p.3.

Google Scholar

[3] J. A. Cooper, Jr.: Mater. Sci. Forum Vol. 389-393 (2002), p.15.

Google Scholar

[4] See, e. g., Y. C. Cheng: Progr. Surf. Sci. Vol. 8 (1977), p.181.

Google Scholar

[5] V. V. Afanas'ev, M. Bassler, G. Pensl, and M. J. Schulz: Phys. Status Solidi a Vol. 162 (1997), p.321.

Google Scholar

[6] M. Di Ventra and S. T. Pantelides: Phys. Rev. Lett. Vol. 83 (1999), p.1624.

Google Scholar

[7] R. Buczko, S. J. Pennycook, and S. T. Pantelides: Phys. Rev. Lett. Vol. 84 (2000), p.943.

Google Scholar

[8] V. V. Afanas'ev, F. Ciobanu, G. Pensl, and A. Stesmans: In: Silicon Carbide: Recent Advances. Edited by W. J. Choyke, H. Matsunami, and G. Pensl. (Springer Verlag, Germany, 2004) p.343.

DOI: 10.1007/978-3-642-18870-1

Google Scholar

[9] V. V. Afanas'ev et al: J. Phys.: Condens. Matter Vol. 16 (2004), p. S1839.

Google Scholar

[10] V. V. Afanas'ev et al.: Appl. Phys. Lett. Vol. 76 (2000), p.336.

Google Scholar

[11] N. S. Saks, S. S. Mani, and A. K. Agarwal: Appl. Phys. Lett. Vol. 76 (2000), p.2250.

Google Scholar

[12] E. H. Poindexter: Semicond. Sci. Technol. Vol. 4 (1989), p.961.

Google Scholar

[13] For a recent review see, e. g., A. L. Stesmans: In: Defects in SiO2 and Related Dielectrics: Science and Technology, Edited by G. Paccioni et al. NATO ASI Series II vol. 2 (Dordrecht: Kluwer, 2000) p.529.

Google Scholar

[14] J. Campi et al.: IEEE Trans. Electron Devices Vol. ED-46 (1999), p.511.

Google Scholar

[15] V. V. Afanas'ev et al.: Appl. Phys. Lett. Vol. 68 (1996), p.2141.

Google Scholar

[16] J. Robertson: Adv. Phys. Vol. 35 (1984), p.317.

Google Scholar

[17] V. V. Afanas'ev, A. Stesmans, and M. O. Andersson: Phys. Rev. B Vol. 54 (1996), p.10820.

Google Scholar

[18] V. K. Vathuya, D. N. Wang, and M. H. White: Appl. Phys. Lett. Vol. 73 (1998), p.2161.

Google Scholar

[19] V. V. Afanas'ev, A. Stesmans, and C. I. Harris: Mater. Sci. Forum Vol. 264-268 (1998), p.857.

Google Scholar

[20] K. C. Chang, T. Nuhfer, L. M. Porter, and Q. Wahab: Appl. Phys. Lett. Vol. 77 (2000), p.2186.

Google Scholar

[21] K. C. Chang, L. M. Porter, J. Bentley, C. Y. Lu, and J. Cooper, Jr., J. Appl. Phys. Vol. 95 (2004) p.8252.

Google Scholar

[22] V. V. Afanas'ev and A. Stesmans: Appl. Phys. Lett. Vol. 69 (1996), p.2252.

Google Scholar

[23] P. J. McFarlane and M. E. Zvanut: J. Appl. Phys. Vol. 88 (2000), p.4122.

Google Scholar

[24] D. J. Meyer, N. A. Bohna, P. M. Lenahan, and A. J. Lelis, Appl. Phys. Lett. Vol. 84 (2004) p.3406.

Google Scholar

[25] V. V. Afanas'ev and A. Stesmans: Phys. Rev. Lett. Vol. 78 (1997), p.2437.

Google Scholar

[26] R. S. Okoije et al.: Appl. Phys. Lett. Vol. 79 (2001), p.3056.

Google Scholar

[27] V. V. Afanas'ev and A. Stesmans: Mater. Sci. Eng. B Vol. 102 (2003), p.308.

Google Scholar

[28] A. O. Konstantinov et al.: Mater. Sci. Forum Vol. 264-268 (1998), p.1025.

Google Scholar

[29] F. Ciobanu et al. : Mater. Sci. Forum Vol. 443-446 (2003), p.551.

Google Scholar

[30] H. Yano, T. Kimito, and H. Matsunami: Appl. Phys. Lett. Vol. 81 (2002), p.301.

Google Scholar

[31] T. Hirao et al.: Mater. Sci. Forum Vol. 389-393 (2002), p.1065.

Google Scholar

[32] H. F. Li, S. Dimitrijev, H. B. Harrison, and D. Sweatman : Appl. Phys. Lett. Vol. 70 (1997), p. (2028).

Google Scholar

[33] H. F. Li, S. Dimitrijev, D. Sweatman, and H. B. Harrison: J. Electron. Mater. Vol. 29 (2000), p.1027.

Google Scholar

[34] P. Jamet and S. Dimitrijev: Appl. Phys. Lett. Vol. 79 (2001), p.323.

Google Scholar

[35] P. Jamet, S. Dimitrijev, and P. Tanner: J. Appl. Phys. Vol. 90 (2001), p.5058.

Google Scholar

[36] R. Schorner et al.: Appl. Phys. Lett. Vol. 80 (2002), p.4253.

Google Scholar

[37] V. V. Afanas'ev et al.: Appl. Phys. Lett. Vol. 82 (2003), p.568.

Google Scholar

[38] V. V. Afanas'ev et al.: Appl. Phys. Lett. Vol. 82 (2003), p.922.

Google Scholar