Observation of Deep Level Centers in 4H and 6H Silicon Carbide Metal Oxide Semiconductor Field Effect Transistors

Article Preview

Abstract:

Utilizing an very sensitive electron spin resonance (ESR) technique, spin dependent recombination (SDR) we have identified interface and near interface trapping centers in 4H and 6H SiC/SiO2 metal oxide semiconductor field effect transistors (MOSFETs). We extend our group’s earlier observations on 6H devices to the more technologically important 4H system and find that several centers can play important roles in limiting the performance of SiC based MOSFETs.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 483-485)

Pages:

593-596

Citation:

Online since:

May 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.A. Lipkin and J. W. Palmour: IEEE Trans. On Electron Dev. Vol. 46 (1999), p.525

Google Scholar

[2] J.A. Cooper: Phys. Stat. Sol. (a) Vol. 162 (1997), p.305

Google Scholar

[3] S.K. Powell, N. Goldsman, J.M. McGarrity, J. Bernstein, C.J. Scozzie and A. Lelis: J. Appl. Phys. Vol. 92 (2002), p.4053

Google Scholar

[4] H. Li, S. Dimitrijev, H.B. Harrison and D. Sweatman: Appl. Phys. Lett. Vol. 70 (1997), p. (2028)

Google Scholar

[5] H. Li, S. Dimitrijev, H.B. Harrison and D. Sweatman: Appl. Phys. Lett. Vol. 76 (2000), p.1585

Google Scholar

[6] G.Y. Chung, C.C. Tin, J.R. Williams, K. McDonald, M. Di Ventra, S.T. Pantelides, L.C. Feldman and R. A. Weller: Appl. Phys. Lett. Vol. 76 (2000), p.1713

Google Scholar

[7] P.M. Lenahan and J.F. Conley, Jr.: J. Vac. Sci. Technol. B Vol. 16 (1998), p.2134

Google Scholar

[8] P.M. Lenahan and M.A. Jupina: Colloids and Surfaces Vol. 45 (1990), p.191

Google Scholar

[9] D. J. Meyer, N. A. Bohna, P. M. Lenahan, and A. Lelis, Appl. Phys. Lett. Vol. 84 (2004), p.3406

Google Scholar

[10] D.J. Meyer, N. A. Bohna, P. M. Lenahan, and A. Lelis, Mater. Sci. Forum Vol. 457-460 (2004), p.477

Google Scholar

[11] J. L. Cantin, H. J. von Bardeleben, Y. Shishkin, Y. Ke, R. P. Devaty, and W. J. Choyke, Phys. Rev. Lett. Vol. 92 (2004), p.15502

Google Scholar

[12] D.J. Lepine, Phys. Rev. B Vol. 6 (1972), p.436

Google Scholar

[13] D. Kaplan, I. Soloman, and N. F. Mott, J. Phys. Lett. (Paris) Vol. 39 (1978), L51 2.0005 2.0010 2.0015 2.0020 2.0025 2.0030 0 30 60 90 120 150 180 Angle between Interface Normal and Magnetic Field g-Value 2.0005 2.0010 2.0015 2.0020 2.0025 2.0030 0 30 60 90 120 150 180 Angle between Interface Normal and Magnetic Field g-Value 2.0005 2.0010 2.0015 2.0020 2.0025 2.0030 0 30 60 90 120 150 180 Angle between the [1 1 2 0] projection onto the interface plane and Magnetic Field g-Value Figure 4 - (a) g vs. magnetic field orientation with respect to the surface normal rotation about the integrated circuit side edge axis. This axis corresponds approximately to the[ ]0011 axis and the surface normal is 8° from the [ ]0001 crystalline axis. (b) g vs. magnetic field orientation with respect to the surface normal rotation about the integrated circuit side edge axis. This axis corresponds approximately to the[ ]0211 axis. (c) g vs. magnetic field orientation with respect to the edge axis of the integrated circuit for rotation around the surface normal. Note: the solid lines correspond to calculated g values utilizing the correct crystalline orientation and g|| = 2.0026 and g┴ = 2.0010. (a) (b) (c)

Google Scholar