Effect of Thermal Mismatch Stress on Thermal Expansion Behaviors of Al18B4O33w/Al Composite Containing Fe3O4 Particle

Article Preview

Abstract:

The thermal expansion behaviors of aluminum borate whisker and Fe3O4 reinforced pure aluminum matrix composite with different thermal treatments were studied. Using transmission electron microscopy (TEM) the microstructures of the composite were investigated. The results indicated that the thermal expansion coefficient of the new composite was low. It can be found that the thermal expansion coefficient of as-cast composite is much lower than that of quenched and annealed composites. On the basis of phase transformation analysis of Fe3O4 particles in the composite, the mechanism of low CTE of the composite was discussed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 490-491)

Pages:

558-563

Citation:

Online since:

July 2005

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Suganuma, T. Fujita, N. Suzuki and K. Niihara: J. Mater. Sci. Lett. Vol. 9 (1990), p.633.

Google Scholar

[2] J. Hu, W. D. Fei, C. Li and C. K. Yao: J. Mater. Sci. Lett. Vol. 13 (1994), p.1794.

Google Scholar

[3] J. Hu, W. D. Fei, C. Li and C. K. Yao: J. Mater. Sci. Technol. (China) Vol. 1 (1993), p.1.

Google Scholar

[4] W. D. Fei, X. D. Jiang, S. Wu, C. Li and C. K. Yao: Chin. J. Mater. Res. Vol. 9 (1995), p.94.

Google Scholar

[5] L. J. Yao, W. D. Fei, C. Li and C. K. Yao: J. Mater. Sci. Technol. (China) Vol. 3 (1994), p.4.

Google Scholar

[6] W. D. Fei, X. D. Jiang, C. Li and C. K. Yao: Mater. Sci. Technol. Vol. 13 (1997), p.918.

Google Scholar

[7] W. D. Fei, Q. Y. Liu, N. G. Liang and C. K. Yao: Mater. Sci. Technol. Vol. 17 (2001), p.912.

Google Scholar

[8] C. T. Kim, J. K. Lee, M. R. Plichta: Metall. Trans. Vol. 21A (1990), p.673.

Google Scholar

[9] M. Vogelsang, R. J. Arsenault and R. M. Fisher: Metall. Trans. Vol. 17A (1986), p.379.

Google Scholar

[10] H.Y. Zhang, P. M. Anderson and G. S. Daehn: Metall. Mater. Trans. Vol. 25A (1994), P. 415.

Google Scholar

[11] J.M. Papazian and P. N. Alder: Metall. Trans. Vol. 21A (1990), p.401.

Google Scholar

[12] G. L. Povirk, A. Needleman and S. R. Nutt: Mater. Sci. Eng. Vol. A132 (1991), p.31.

Google Scholar

[13] L. D. Wang, W. D. Fei, M. Hu, L. S. Jiang and C. K. Yao: Mater. Lett. Vol. 53 (2002), p.20.

Google Scholar

[14] G. Li, Y. Sun and W. D. Fei: Mater. Lett. Vol. 57 (2003), p.3217.

Google Scholar

[15] M. Ishizuka, H. Kato, T. Kunisue, S. Endo, T. Kanomata and H. Nishihara: J. Alloy Comp. Vol. 320 (2001), p.24.

Google Scholar

[16] T. Eto, M. Ishizuka, S. Endo, T. Kanomata and T. Kikegawa: J. Alloy Comp. Vol. 315 (2001), p.16.

Google Scholar

[17] W. D. Fei, M. Hu and C. K. Yao: Mater. Chem. Phys. Vol. 77 (2003), p.882.

Google Scholar

[18] A. Chaianni, T. Yokoya, T. Morimoto, T. Takahashi and S. Todo: J. Elec. Spect. Related Pheno. Vol. 78 (1996), p.99.

Google Scholar

[19] L. D. Wang: Ph. D Thesis (Harbin Institute if technology, China 2003).

Google Scholar