An Investigation of Residual Stress of Porous Titania Layer by Micro-Arc Oxidation under Different Voltages

Article Preview

Abstract:

The surface modification of titanium by micro-arc oxidation under different voltages was processed to achieve good direct oseointegration. The new technique of two-dimensional X-ray diffraction was used to measure the residual stress of the layer. The results show that a porous titania layer containing Ca and P is obtained by micro-arc oxidation. The pore size and Ca/P of the layer are affected by the voltage. The high voltage can induce forming CaTiO3. The residual stress under different voltage is compressive stress and increases with the improvement of the voltage.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 490-491)

Pages:

552-557

Citation:

Online since:

July 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J Black, G Hastings. handbook of biomaterial properties. London: Chapman & Hall, (1998).

Google Scholar

[2] R Boyer, G Welsch, EW Collings. Materials properties handbook: titanium alloys. Ohio: ASM international (1994).

Google Scholar

[3] T Alberktsson, B Alberltsson. Acta Orthop Scand Volume 58(1987)567.

Google Scholar

[4] IMO Kanagasbiemi, CCPM Verheyen, et al. J Biomed Mater Res Volume 28(1994)563.

Google Scholar

[5] K Takatsuka, T Yamamuro, T Makamura, T Kokubo. J Biomed mater Res Volume 29(1995)157.

Google Scholar

[6] RM Urban, JJ Jacobs, DR Sumner, CL Peters, et al. J Bone Jt Surg Volume 78(1996)1068.

Google Scholar

[7] B Koch, C Wolke, K Groot. J Biomed Mater Res Volume 24(1990)655.

Google Scholar

[8] L Ellies, D Nelson, J Featherstone. Biomaterials, Volume 13(1992)313.

Google Scholar

[9] R Whitechead, W Lacefield, L Lucas. J Biomed Mater Res Volume 27(1993)1501.

Google Scholar

[10] H Ji, P Marquis. Biomaterials, Volume(1993)64.

Google Scholar

[11] Z Zyman, J Weng, X Liu, X Li, X Zhang. Biomaterials, Volume (1994)151.

Google Scholar

[12] K. Ando, K. Matsumura, Thin Solid Films Volume 52(1978)153.

Google Scholar

[13] P. Kurze, W. Krysmann, J. Schreckennach, Th. Schwarz., K. Rabending. cryst. Res. Technol. Volume 22(1987)53.

DOI: 10.1002/crat.2170220115

Google Scholar

[14] V. Maqlyschev. OberflachentechniK Volume 49(1995)606.

Google Scholar

[15] J. Schreckenbach. metalloberflache Volume 45(1991)437.

Google Scholar

[16] J. Tian, Z. Luo, S. Qi, X. Sun, Surf. Coat. Tech. Volume 154(2002)1.

Google Scholar

[17] S. Carlsson, P L Larsson. Acta Mater. Volume 49(2001)2193.

Google Scholar

[18] Y Han, KW Xu, J Lu. J. Biomed. Mater Res. Volume 45(1999)198.

Google Scholar

[19] O. Zywitzki, et. al. E-MRS Spring Meeting 2003, Symposium G: Protective coatings and thin films Strasbourg, France, June 10 - 13, (2003).

Google Scholar

[20] B He. Powder Diffraction Volume 18(2003)71.

Google Scholar