Materials Science Forum Vols. 500-501

Paper Title Page

Abstract: The hot strip rolling of advanced microalloyed high strength steels still represents a new task to many mills due to the lack of data on the hot deformation resistance. With the aid of processing data from the Ispat-Inland hot strip mill, the “measured mean flow stresses” are calculated from the mill force using the Sims analysis and taking into account roll flattening, slip ratio and the redundant strain. A modification of the Misaka mean flow stress equation is proposed for C – Mn – Si – Al steels microalloyed with up to 0.02 % Nb. The effects of alloying and microalloying are then estimated. A new fitting parameter shows excellent agreement with the mean flow stress data from industrial processing of advanced high strength microalloyed steels. However, during the second half of the rolling schedule (lower temperature region), indications of austeniteto- ferrite transformation were found.
203
Abstract: The problems associated with the use of conventional rolling mill models are described. These include the unavoidable variations in temperature and strain rate (rolling speed) during rolling. They are exacerbated by the wide variety of mill types and configurations found in industry and their correspondingly broad ranges of interpass time. Finally, a major limitation arises from the approach currently employed to model the “strain accumulation” attributable to incomplete softening between passes, particularly during the processing of microalloyed steels.
211
Abstract: Mill logs obtained from the Hylsa CSPTM (thin slab casting/direct rolling – TSC/DR) mill were examined so that the mean flow stresses at each pass were calculated using the Sims equation modified to take into account the forward slip ratio, the redundant strain and the work roll flattening. The mean flow stresses were then compared to predicted values obtained from a model. The microstructures during the CSP process were predicted by a mathematical model which was initially derived for conventional slab/roughing mill/hot strip mill (HSM) processing route. The adapted model takes into account the deformation of the as-cast structure in the finishing CSP mill, by using particular microstructural equations to calculate the softening kinetics and grain sizes. The main metallurgical features such as the occurrence of Nb(C,N) precipitation, the softening mechanism which takes place (static or metadynamic recrystallization) as well as the strain accumulation between passes were calculated. The mean-flow-stress results obtained from the calculations are in good agreement with the mill data. The present analysis indicates that it is possible to produce fine-grained microalloyed steels with homogeneous microstructure in thin slab casting/direct rolling processing.
221
Abstract: The development of microstructure of Nb,Ti-bearing microalloyed steel during the CSP process was studied. Three samples were taken from the as-cast slab prior to tunnel furnace, intermediate bar after stand F2 and the hot band, respectively. In the as-cast slab, the average austenite grain size is 654 µm with a large size range from 150 to 2000 µm. In the intermediate bar after stand F2, the austenite grains are remarkably refined, but are heterogenous due to the incomplete recrystallization, which are in the size range of 23 to 116 µm. In the hot band is mainly non-polygonal ferrite. Microstructural heterogeneity exists in the hot band. It is attributed to the heterogeneous austenite grain size in the intermediate bar and the less rolling reduction after stand F2. With regards to precipitation, cubic TiN and fine precipitates less than 20nm are commonly observed in the as-cast slab and the intermediate bar. Some complex (Ti,Nb)(C,N) precipitates with a slightly larger size also exist. In the hot band, most particles are complex (Ti,Nb)(C,N) precipitates, in a shape of irregular or cruciform. The fine precipitates which can strengthen the ferrite matrix are seldom seen. These results are in good agreement with the size distribution of the precipitates determined using small angle X-ray scattering method. The chemical phase analysis reveals that 45%Nb of the total and 43%Ti of the total are still in solution in ferrite of the hot band.
229
Abstract: Vanadium microalloyed steels with high yield strength (»600MPa), good toughness and ductility have been successfully produced in commercial thin slab casting plants employing direct rolling after casting. Because of the high solubility of VN and VC, most of the vanadium is likely to remain in solution during casting, equalisation and rolling. While some vanadium is precipitated in austenite as cuboids and pins the grain boundaries, a major fraction is available for dispersion strengthening of ferrite. Despite a coarse as-cast grain size, significant grain refinement can be achieved by repeated recrystallisation during hot rolling. Consequently, a fine and uniform ferrite grain structure is produced in the final strip. Increasing the V and N levels increases dispersion strengthening which occurs together with a finer ferrite grain size. The addition of titanium to a vanadium containing steel, decreases the yield strength due to the formation of V-Ti(N) particles in austenite during both casting and equalisation. These large particles reduced the amount of V and N available for subsequent precipitation of fine (~5nm) V rich dispersion strengthening particles in ferrite.
237
Abstract: The microstructural evolution during the hot rolling of coarse grain sized austenite has been modeled taking into consideration all the microstructural mechanisms (dynamic, static and metadynamic recrystallization, strain induced precipitation) that could take place during the industrial TSDR production of a Nb microalloyed steel. Based on the results obtained from the model, processing maps have been drawn for a 0.035%Nb microalloyed steel. Optimum processing conditions to exploit all the benefits of Nb microalloying have been defined considering a final gauge thickness range between 1.5 and 12.65 mm.
245
Abstract: The use of thin slab casting and direct rolling is well suited for the production of niobium microalloyed low-carbon high strength linepipe grades. The slabs have excellent surface quality. Thermomechanical processing by controlling hot work hardening and softening processes of austenite and its polymorphic transformation into ferrite results in a powerful microstructure refinement. This is a sound basis for setting high strength, combined with excellent ductility and toughness.
253
Abstract: API X60/X70 line pipe steels are characterized by their higher strength and excellent toughness properties, which are achieved through grain refinement by addition of micro-alloying elements and controlled rolling. Thin slab casting of Nb micro-alloyed steel is a great challenge to the steel producer because of possible transverse cracking of slabs. The major casting parameters, which affect transverse cracking, were critically examined and modified for production of defect free slabs. The hot strip mill parameters were also designed for controlled rolling of slabs to achieve the desired mechanical properties. Three heats (one X60 and two X70) of each 175 ton liquid steel were made and processed into 6, 8 and 10 mm hot rolled coils. In the heat of X60, Nb and Ti were used as micro-alloying elements where as vanadium was also added in X70 heats to achieve the desired strength. The YS/UTS ratio was designed to be below 0.9 by controlling the amount of Si and Mn. During slab casting, liquid core reduction (LCR) was used to reduce the slab thickness from 90 to 70 mm and to minimize the center line segregation and porosity. The slabs were heated and homogenized in a tunnel furnace at 1150 ±10°C before rolling in the roughing mill. The rolling procedure was designed to achieve the highest possible amount of deformation at the roughing stand for best conditioning of austenite before rolling in the finishing mill. 50% and 35% reductions in slab thickness were given for rolling of 6 and 10 mm coils respectively. The final thickness reduction was then distributed over 5-6 stands of the finishing mill depending on the coil thickness. All parameters were designed to achieve finish rolling temperature 850 ±10°C in the austenite region and very near to Ar3. After rolling, the steel was fast cooled to 570±10°C before coiling. Mechanical properties and microstructure evolutions were extensively investigated. The tensile properties particularly the elongation and YS/UTS ratio achieved were good. The CVN impact energy in transverse direction was found to be very high ranging from 220 to 330 Joules. Furthermore, the impact transition temperature (ITT) was found to be below -70 °C. The results of the drop weight tear test (DWTT) showed fully ductile behavior up to -40°C confirming the impact test results. SEM study was carried out to assess the fracture mechanism of impact-tested specimens at different temperatures.
261
Abstract: The effects of Nb and V on the anisotropy and textures featuring the hot rolled low carbon microalloyed steels produced by A.S.T. (Arvedi Steel Technology) have been studied as a function of the final coiling temperatute Tcoiling. Mechanical properties and r-values for twelve steels have been determined through tensile tests performed on three main different directions: 0°, 45°, 90° to the rolling one. The samples have been analysed by EBSD (Electron Back Scattering Diffraction) to identify the textures developed during the process. The relations among the chemical composition of the steels (i.e. C, N, Nb, V contents), the mechanical properties, the temperature during the coiling operations, the textures and the formability properties have been pointed out.
279

Showing 21 to 30 of 94 Paper Titles