Materials Science Forum
Vols. 675-677
Vols. 675-677
Materials Science Forum
Vol. 674
Vol. 674
Materials Science Forum
Vol. 673
Vol. 673
Materials Science Forum
Vol. 672
Vol. 672
Materials Science Forum
Vol. 671
Vol. 671
Materials Science Forum
Vol. 670
Vol. 670
Materials Science Forum
Vols. 667-669
Vols. 667-669
Materials Science Forum
Vol. 666
Vol. 666
Materials Science Forum
Vols. 663-665
Vols. 663-665
Materials Science Forum
Vol. 662
Vol. 662
Materials Science Forum
Vols. 660-661
Vols. 660-661
Materials Science Forum
Vol. 659
Vol. 659
Materials Science Forum
Vol. 658
Vol. 658
Materials Science Forum Vols. 667-669
Paper Title Page
Abstract: The effect of grain size on the deformation twinning and de-twinning in a nanocrystalline Ni-Fe alloy was investigated using transmission electron microscopy. Specimens with different grain sizes were obtained by severely deforming an electrochemically deposited nanocrystalline Ni-20wt.% Fe alloy using high-pressure torsion, which resulted in continuous grain growth from an average grain size of ~ 21 nm in the as-deposited material to ~ 72 nm for the highest strain applied in this study. Results show that deformation de-twinning occurs at very small grain sizes while deformation twinning takes place when the grain size is larger than ~ 45 nm. The mechanism of the observed grain size effect on twinning and de-twinning is briefly discussed.
181
Abstract: This paper presents the results of experimental X-ray structural analyses of both the evolution structure and the crystallographic one in the volume of Ti samples, subjected to the Severe Plastic Deformation (SPD), realized by torsion under high pressure equal to 6 GPa at temperature 298 K. The investigations have been carried out on the disk-shaped samples with the radius of 20 mm in an initial state (the as-received state) and in the states after 0.1, 0.5, 1 and 5 rotations by High-Pressure Torsion (HPT). In the result the evolution mechanisms of the general X-ray patterns, the volume fraction of phases, the character of preferred orientations, as well as the activity of various slip and twinning systems in α- and ω-phases, depending on the SPD degree have been found out. The received results allow explaining and forecasting the behavior of nanostructured Ti, considering the parameters of its microstructure and crystallographic texture.
187
Abstract: In this study, the microstructure evolution as well as mechanical properties of T2 copper tube during severe hot rolling has been investigated. Owing to the severe hot rolling deformation and high rolling temperature, the microstructure of T2 copper tube evolved from initial cast structure into relatively homogenous and equiaxed grains during the process, which was testified through the results of optical microscope observation. Besides, the microhardness measurements were taken, from which the results gained were in correspondence to the microstructure transformation.
193
Abstract: We processed a ferritic-pearlitic dual-phase steel under high pressure torsion for three and five rotations at room temperature, the results shew the concurrent processes of the grain refinement of ferrite phase and the decomposition of the cementite lamellae. After three rotations, a non-homogeneous structure was observed. The ferrite structure contained both cellular structure and banded nano-granular structure. The cementite was fragmented to fine particles, aligned along the longitudinal direction of the banded ferrite structure in the local region. After five rotations, a homogeneous mixture of nanoscaled equiaxed ferrite crystallites and cementite particles was obtained, without any visible trace of the former lamellar-type structure or particle alignment. The size distribution of the remaining cementite particles turned to a more narrow distribution skewed to finer sizes especially smaller than 10 nm, since the torsion increased from three to five rotations.
199
Abstract: Plastic deformation creates orientation differences in grains of originally uniform orientation. These disorientations are caused by a local excess of dislocations having the same sign of the Burgers vector. Their increase with increasing plastic strain is modeled by dislocation dynamics taking into account different storage mechanisms. The predicted average disorientation angles across different types of boundaries are in close agreement with experimental data for small and moderate plastic strains. At large plastic strains after severe plastic deformation, saturation of the measured average disorientation angle is observed. This saturation is explained as an immediate consequence of the restriction of experimentally measured disorientation angles to angles below a certain maximum value imposed by crystalline symmetry. Taking into account the restrictions from crystalline symmetry for modeled disorientation angles does not only lead to an excellent agreement with experimental findings on Ni after high pressure torsion, but also rationalizes the work-hardening behavior at large plastic strains as well as a saturation of the flow stress.
205
Abstract: The effect of prior and subsequent precipitation on recrystallization behavior during the isothermal annealing of an Al-0.2%wt.Sc alloy heavily deformed by accumulative roll bonding (ARB) up to 10 cycles at ambient temperature was investigated. Three kind of different microstructures, i.e., solution treated one, 300°C pre-aged one and 400°C pre-aged one, were prepared as the starting structures for the ARB process. It is found that precipitation pinning effect of Al3Sc suppresses recrystallization and especially the 400°C pre-aging was effective to stabilize the ultrafine grained structure of the matrix. Dissolution of pre-aging Al3Sc precipitates was suggested by re-precipitation during annealing of the ARB processed specimens at around 300°C.
211
Abstract: Among the well-known methods of severe plastic deformation the accumulative roll bonding (ARB) process is most promising for producing ultrafine-grained (UFG) materials with extraordinary mechanical properties at an industrial scale. Besides, it has also been shown that the ARB process can be successfully used to produce multi-component materials with tailored properties by reinforcement or grading, respectively. In this work, laminates with alternating layers of the high strength aluminium alloy AA5754 and the AA6014 alloy, well-known for good formability and high surface quality, were produced by ARB at 230 °C. Microstructural and mechanical investigations were performed after 2, 4 and 6 ARB cycles by means of light and electron microscopy, nanoindentation experiments and tensile testing. After ARB processing an ultrafine-grained microstructure is obtained. The UFG microstructure as well as the local mechanical properties alter with the layer composition. With increasing number of ARB cycles the interfaces between the layers become more and more wavy by shear band formation. Compared to the pure accumulative roll bonded AA6014 the yield and ultimate tensile strength of the multi-component laminates are considerably higher and are only slightly reduced in comparison to the high strength AA5754. In terms of elongation to failure no reduction in ductility is found. The serrated yielding effect, clearly visible in AA5754, is shifted to higher strains or fully disappears, respectively, whereas in AA5754 the magnitude of serrations increases with increasing number of ARB cycles. Combining AA5754 and AA6014 sheets by ARB results in well bonded ultrafine-grained laminates which exhibit a combination of the beneficial properties of the single-component materials: high strength of AA5754 and good surface quality of AA6014.
217
Microstructural Evolution in an Al-6061 Alloy Processed by High-Pressure Torsion and Rapid Annealing
Abstract: The processing of bulk metals through the application of severe plastic deformation provides the opportunity for introducing significant grain refinement into bulk solids. In the present investigation, an aluminum alloy (Al-6061) was processed by high-pressure torsion (HPT) at room temperature under an applied pressure of 6.0 GPa up to a total of 5 turns. Detailed measurements after processing revealed the occurrence of continuous grain refinement and material strengthening with increasing imposed strain. The average grain size of the alloy was reduced from ~150 m to a grain size in the range of ~500 nm through processing by HPT. Although there was a difference in the average grain size of samples processed to different levels of imposed strain, careful inspection showed that the structures became similar after annealing at 250°C for 5 min. This suggests that the additional grain refinement introduced at large amounts of deformations is less stable at high temperatures. The results of this investigation, including the distributions of the grain sizes after annealing, are consistent with the predictions of a model based on the occurrence of continuous recrystallization in aluminum alloys having fine grain structures, large fractions of high-angle grain boundaries and where there is a large amount of deformation.
223
Abstract: A method to produce nanocrystalline Fe-Cu composites by means of high-pressure torsion (HPT) deformation is presented. Mixtures of micrometer sized powders of Fe and Cu with different ratios of the two components were precompacted and subsequently deformed by HPT at room temperature to a certain amount of strain. Afterwards, new samples were cut out of these previously deformed samples and further HPT deformation was conducted. The evolution of the microstructure during the different steps of the HPT process and the resulting microstructure of the composites were investigated by scanning electron microscopy. In summary it could be shown that the final attainable grain sizes in the composite materials in the two step process are much smaller than in the simply HPT deformed composites. The reduction of the grain size is also reflected in an enhancement of the hardness.
229
Abstract: Experiments were conducted on extremely coarse-grained pure copper to evaluate the effect of equal-channel angular pressing (ECAP) on microstructure evolution in the as-pressed state and after creep exposure using various stereological methods. The microstructure formed by severe plastic deformation is an unusual structure which can be hardly characterized only by the mean grain size especially after low number of ECAP passes. The purpose of this paper is a detailed examination of (sub)boundaries and grain boundaries in the microstructures of the pressed material. The inhomogeneity of deformed microstructures is also evaluated. The detailed description of ECAP microstructures should contribute to the better understanding of mechanical properties of the pressed materials.
235