Molecular Dynamics Simulation of Relaxation and Local Structure Change of a Molten Cu135 Cluster during Rapidly Quenching

Article Preview

Abstract:

Relaxation and local structure changes of a molten Cu135 cluster have been studied by molecular dynamics simulation using embedded atom method when the cluster is rapidly quenched to 700K, 600K, 500K, 400K, 300K, 200K, and 100K. With decreasing quenching temperature, details of energy evolvement and relaxation are analyzed. The simulation results show that the final structures are molten at 700K, like-icosahedral geometry at 600K-200K, non-crystal at 100K. The average energy of atoms is the lowest at 500K, and in the relaxation has abrupt increase at 25,135 and 42ps separately at 400K, 300K, and 200K. The simulation reveals that the quenching temperature has great affect on the relaxation processes of the Cu135 cluster after β relaxation region.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

908-913

Citation:

Online since:

July 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Baletto, R.Ferrando, Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects, J. Rev Mod Phys. 77(2005) 371-423.

DOI: 10.1103/revmodphys.77.371

Google Scholar

[2] G. Ertl, H. J. Freund, Catalysis and surface science, J. Phys Today. 1(1999) 32-38.

Google Scholar

[3] C. R. Henry, Surface studies of supported model catalysts, J. Surf Sci Rep. 31(1998) 231-325.

Google Scholar

[4] H. Gleiter, Nanocrystalline materials, J. Progr Matter Sci. 33(1989) 223-229.

Google Scholar

[5] S. Valkealahti, M. Manninen, Molecular dynamics simulation of crystallization of liquid copper clusters, J. Phys: Condens Matter. 9(1997) 4041-4050.

DOI: 10.1088/0953-8984/9/20/004

Google Scholar

[6] R. Liu, J. Y.Li, K. J. Dong, Formation and evolution properties of clusters in a large liquid metal system during rapid cooling processes, J. Mater. Sci. and Engineer B. 94(2002) 141-148.

Google Scholar

[7] S.L. Gafner, L.V. Redel, Y.Y. Gafner, Simulation of the processes of structuring of copper nanoclusters in terms of the tight-binding potential, J. Journal of Experimental and Theoertical Physics. 108(2009)784-799.

DOI: 10.1134/s1063776109050070

Google Scholar

[8] L. Zhang, S. N. Xu, C. B. Zhang, Y. Qi, Molecular dynamics investigations of structural changes accompanying with freezing a molten Cu135 cluster on cooling, J. Computational Materials Science. 47(2009) 162-167.

DOI: 10.1016/j.commatsci.2009.07.002

Google Scholar

[9] H. S. Nam, N. M. Hwang, B. D. Yu, J. K.Yoon, Formation of an icosahedral structure during the freezing of gold nanoclusters surface-induced mechanism, J. Phys Rev Lett. 89(2002) 275502-1-4.

DOI: 10.1103/physrevlett.89.275502

Google Scholar

[10] S. N. Xu, L. Zhang, Y. Qi, C. B. Zhang, Molecular-dynamics simulation of structure changes of a molten Cu555 cluster during freezing, Physica B. 405(2010) 632-637

DOI: 10.1016/j.physb.2009.09.078

Google Scholar

[11] F. F. Chen, H. F. Zhang, F. X. Qin, Z. Q. Hu, Molecular dynamics study of atomic transport properties in rapidly cooling liquid copper, J. J Chem Phys. 120(2004)1826-1831

DOI: 10.1063/1.1636452

Google Scholar

[12] R. S. Liu, K. J. Dong, Z. A. Tian, H. R. Liu, Formation and magic number characteristics of clusters formed during solidification processes, J. Phys: Condens Matter. 19(2007)196103

DOI: 10.1088/0953-8984/19/19/196103

Google Scholar

[13] L. Zhang, H. X. Sun, Molecular dynamics study of structural changes in freezing Cu(N=51-56) clusters, J. Solid State Communications. 149(2009) 1722-1725

DOI: 10.1016/j.ssc.2009.06.011

Google Scholar

[14] Z. A. Tian, R. S. Liu, P. Peng, Freezing structures of free silver nanodroplets: A molecular dynamics simulation study, J. Phys Lett A. 373(2009)1667-1671

DOI: 10.1016/j.physleta.2009.02.041

Google Scholar

[15] Y. Chen, J. X. Zhang, L. Wang, Simulation studies on structural evolution of gold clusters during solidification, J. Mater Lett. 59(2005)676-681

DOI: 10.1016/j.matlet.2004.11.012

Google Scholar

[16] Y. Y. Gafner, S. L.Gafner, P. Entel, Formation of an icosahedral structure during crystallization of nickel nanoclusters, J. Physics of the Solid State. 46(2004)1327-1330.

DOI: 10.1134/1.1778460

Google Scholar

[17] S. L. Gafner, S. V. Kosterin, Y. Y. Gafner, Formation of structure modifications in copper nanoclusters, J. Physics of the Solid State. 49(2007)1558-1562.

DOI: 10.1134/s1063783407080264

Google Scholar

[18] J. Mei, J. W. Davenport, G. W. Fernando, Analytic embedded-atom potentials for fcc metalsa: Application to liquid and solid copper, J. Phys Rev B. 43(1991)4653-4658.

DOI: 10.1103/physrevb.43.4653

Google Scholar

[19] J. D. Danaand, H. C.Andersen, Molecular dynamics study of melting and freezing of small Lennard-Jones clusters, J. J Phys Chem. 91(1987)4950-4963

DOI: 10.1021/j100303a014

Google Scholar

[20] H. Jonsson, H. C. Andersen, Icosahedral ordering in the Lennard-Jones liquid and glass, J. Phys Rev lett. 60(1988)2295-2298.

DOI: 10.1103/physrevlett.60.2295

Google Scholar

[21] C. L. Kuo, P. Clancy, Melting and Freezing Characteristics and Structural Properties of Supported and Unsupported Gold Nanoclusters, J. Phys Chem B. 109(2005)13743-13754.

DOI: 10.1021/jp0518862

Google Scholar

[22] Q. N. Fan, W. Li, L. Zhang, Molecular dynamics study of relaxation and local structure changes in rapidly quenched molten Cu57 cluster, J. Acta Physics Sinica. 59(2010)2428-2433.

DOI: 10.7498/aps.59.2428

Google Scholar