EBSD-Based Crystallographic Study on a Ni-Mn-Ga Alloy with Incommensurate 7M Structure

Article Preview

Abstract:

Our recent work on EBSD-based characterization of incommensurate 7M modulated martensite in a polycrystalline Ni50Mn30Ga20 alloy were summarized. The 7M martensitic plates were revealed to be self-accommodated in colonies, where each colony consisted of four types of variants that were twin related. All the pairs of variants can be categorized into three twinning modes, i.e. type-I, type-II and compound twins. The twin interface planes were in coincidence with the respective twinning planes. Using the measured orientations of adjacent martensitic variants, the orientations of parent austenite grains were calculated under the assumed orientation relationships for the austenite to martensite transformation. The energetically favorable orientation relationship between austenite and martenstie for the martensitic transformation was identified to be the Pitsch relation.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 702-703)

Pages:

530-535

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Sozinov, A. A. Likhachev, N. Lanska, K. Ullakko: Appl. Phys. Lett. 80 (2002), p.1746.

Google Scholar

[2] R. C. O'Handley: J. Appl. Phys. 83 (1998), p.3263.

Google Scholar

[3] Z. B. Li, Y. D. Zhang, C. Esling, X. Zhao, L. Zuo: Acta Mater. 59 (2011), p.3390.

Google Scholar

[4] Z. B. Li, Y. D. Zhang, C. Esling, X. Zhao, Y. D. Wang, L. Zuo: J. Appl. Cryst. 43 (2010), p.617.

Google Scholar

[5] Z. B. Li, Y. D. Zhang, C. Esling, X. Zhao, L. Zuo: Acta Mater. 59 (2011), p.2762.

Google Scholar

[6] D. Y. Cong, Y. D. Wang, P. Zetterström, R. L. Peng, R. Delaplane, X. Zhao, L. Zuo: Mater. Sci. Technol. 21 (2005), p.1412.

Google Scholar

[7] L. Righi, F. Albertini, E. Villa, A. Paoluzi, G. Calestani, V. A. Chernenko, S. Besseghini, C. Ritter, F. Passaretti: Acta Mater. 56 (2008), p.4529.

DOI: 10.1016/j.actamat.2008.05.010

Google Scholar

[8] J. W. Christian, S. Mahajan: Prog. Mater. Sci. 39 (1995), p.1.

Google Scholar

[9] B. A. Bilby, A. G. Crocker: Proc. R. Soc. Ser. A 288 (1965), p.240.

Google Scholar

[10] Y. D. Zhang, Z. B. Li, C. Esling, J. Muller, X. Zhao, L. Zuo: J. Appl. Cryst. 43 (2010), p.1426.

Google Scholar

[11] M. Humbert, F. Wagner, H. Moustahfid, C. Esling: J. Appl. Cryst. 28 (1995), p.571.

Google Scholar

[12] E. C. Bain, N. Y. Dunkirk: Trans. AIME 70 (1924), p.25.

Google Scholar

[13] G. Kurdjumov, G. Sachs: Z. Phys. 64 (1930), p.325.

Google Scholar

[14] Z. Nishiyama: Sci. Rep. Tohoku Imp. Univ. 23 (1934), p.637.

Google Scholar

[15] G. Wassermann: Mitt. K-Wilh-Inst Eisenforsch 17 (1935), p.149.

Google Scholar

[16] W. Pitsch: Acta Metall. 10 (1962), p.897.

Google Scholar