Study of Deformation Twinning and Planar Slip in a TWIP Steel by Electron Channeling Contrast Imaging in a SEM

Article Preview

Abstract:

We study the dislocation and twin substructures in a high manganese twinning-induced-plasticity steel (TWIP) by means of electron channeling contrast imaging. At low strain (true strain below 0.1) the dislocation substructure shows strong orientation dependence. It consists of dislocation cells and planar dislocation arrangements. This dislocation substructure is replaced by a complex dislocation/twin substructure at high strain (true strain of 0.3-0.4). The twin substructure also shows strong orientation dependence. We identify three types of dislocation/twin substructures. Two of these substructures, those which are highly favorable or unfavorable oriented for twinning, exhibit a Schmid behavior. The other twin substructure does not fulfill Schmid’s law.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 702-703)

Pages:

523-529

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, D. Barbier, High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties, Current Opinion Solid State Mater. Sci. in press (2011).

DOI: 10.1016/j.cossms.2011.04.002

Google Scholar

[2] I. Gutierrez-Urrutia, S. Zaefferer, D. Raabe, The effect of grain size and grain orientation on deformation twinning in a Fe–22 wt. % Mn–0. 6 wt. % C TWIP steel, Mater. Sci. Eng. A 527 (2010) 3552-3560.

DOI: 10.1016/j.msea.2010.02.041

Google Scholar

[3] D. Raabe, M. Sachtleber, Z. Zhao, F. Roters, S. Zaefferer, Micromechanical and macromechanical effects in grain scale polycrystaI plasticity. Experimantion and simulation, Acta Mater. 49 (2001) 3433-3441.

DOI: 10.1016/s1359-6454(01)00242-7

Google Scholar

[4] I. Gutierrez-Urrutia, D. Raabe: submitted to Acta Materialia (2011).

Google Scholar

[5] I. Gutierrez-Urrutia, S. Zaefferer, D. Raabe, Electron channeling contrast imaging of twins and dislocations in twinning-induced plasticity steels under controlled diffraction conditions in a scanning electron microscope, Scripta Mater. 61 (2009).

DOI: 10.1016/j.scriptamat.2009.06.018

Google Scholar

[6] A.J. Wilkinson, P.B. Hirsch, Electron diffraction based techniques in scanning electron microscopy of bulk materials, Micron 28 (1997) 279-308.

DOI: 10.1016/s0968-4328(97)00032-2

Google Scholar

[7] M.A. Crimp, Scanning Electron Microscopy Imaging of Dislocations in Bulk Materials, Using Electron Channeling Contrast, Microscopy Research Technique 69 (2006) 374-381.

DOI: 10.1002/jemt.20293

Google Scholar

[8] A. Weidner, S. Martin, V. Klemm, U. Martin, H. Biermann, Stacking faults in high-alloyed metastable austenitic cast steel observed by electron channelling contrast imaging, Scripta Mater. 64 (2011) 513-516.

DOI: 10.1016/j.scriptamat.2010.11.028

Google Scholar

[9] V. Gerold, H.P. Karnthaler, On the origin of planar slip in F.C.C. alloys, Acta Metall. 37 (1989) 2177-2183.

DOI: 10.1016/0001-6160(89)90143-0

Google Scholar

[10] S.I. Hong, C. Laird, Mechanisms of slip mode modifications in f. c. c. solid solutions, Acta Mater. 38 (1990) 1581-1594.

DOI: 10.1016/0956-7151(90)90126-2

Google Scholar

[11] B. Bay, N. Hansen, D.A. Hughes, D. Kuhlmann-Wilsdorf, Overview Nº 96. Evolution of F.C.C. deformation structures in polyslip, Acta Metall. Mater. 40 (1992) 205-219.

DOI: 10.1016/0956-7151(92)90296-q

Google Scholar

[12] D. Canadinc, H. Sehitoglu, H.J. Maier, Y.I. Chumlyakov, Strain hardening behavior of aluminum alloyed Hadfield steel single crystals, Acta Mater. 53 (2005) 1831-1842.

DOI: 10.1016/j.actamat.2004.12.033

Google Scholar

[13] D. Canadinc, H. Sehitoglu, H.J. Maier, The role of dense dislocation walls on the deformation response of aluminum alloyed hadfield steel polycrystals, Mater. Sci. Eng. A 454-455 (2007) 662-666.

DOI: 10.1016/j.msea.2006.11.122

Google Scholar

[14] D. Kuhlmann-Wilsdorf, Theory of plastic deformation: -properties of low energy dislocation structures, Mater. Sci. Eng. A 113 (1989) 1-41.

DOI: 10.1016/0921-5093(89)90290-6

Google Scholar

[15] T. Mori, H. Fujita, Effect of dislocation structure on the flow stress in Cu-3at. %Al single crystals, Phil. Mag. A 46 (1982) 91-104.

DOI: 10.1080/01418618208236210

Google Scholar

[16] N. Hansen, X. Huang, Microstructure and flow stress of polycrystals and single crystals, Acta Mater. 46 (1998) 1827-1836.

DOI: 10.1016/s1359-6454(97)00365-0

Google Scholar

[17] J.P. Hirth, J. Lothe, Theory of dislocations, John Wiley & Sons, (1982).

Google Scholar

[18] L. Bracke, L. Kestens, J. Penning, Direct observation of the twinning mechanism in an austenitic Fe–Mn–C steel, Scripta Mater. 61 (2009) 220-222.

DOI: 10.1016/j.scriptamat.2009.03.045

Google Scholar

[19] G. Winther, D. J. Jensen, N. Hansen, Dense dislocations walls and microbands aligned with slip planes. Theoretical considerations, Acta Mater. 45 (1997) 5059-5068.

DOI: 10.1016/s1359-6454(97)00168-7

Google Scholar