Generalized Pole Figures and Stored Energy Distribution Function Obtained by X-Ray Diffraction

Article Preview

Abstract:

Abstract. Anisotropy of physical and mechanical properties of textured polycrystalline materials strongly depends on microstructural characteristics, such as subgrain sizes, lattice deformations, etc. Generalized Pole Figures (GPF) are an attempt to estimate the anisotropy of these properties; so, the energy stored during plastic deformation is a key parameter in primary recrystallization. In this work, the technique to measure GPF (measurements and software) was implemented for X-Ray diffraction and applied to study of property anisotropy of a Fe50%Ni alloy. GPF’s of texture, crystallite size, stored energy and diffraction peak shift, (among others) have been characterized. The Full Width at Half Maximum (FWHM) of obtained instrumental functions shows that defocusing is significant for polar angle higher than 50°. The mixing parameter of the pseudo-Voigt function using in fitting, presents important dispersions.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 702-703)

Pages:

519-522

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Perlovich, H.J. Bunge and M. Isaenkova. Inhomogeneous Distribution of Residual Deformation Effects in Textured BCC Metals. Textures & Microstructures, 29 (1997) 241-266.

DOI: 10.1155/tsm.29.241

Google Scholar

[2] D. Chateigner, Combined Analysis: Structure-texture microstructure-phase-stresses-reflectivity determination by x-ray and neutron scattering, Wiley-ISTE, (2010).

Google Scholar

[3] R.A. Young, The Rietveld Method. Edit. IUCr Oxford University Press (1993).

Google Scholar

[4] J.S. Kallend and Y.C. Huang, Orientation dependence of stored energy of cold work in 50% cold rolled copper, Metal Science 18 (1984) 381-385.

DOI: 10.1179/030634584790419890

Google Scholar

[5] H.J. Bunge, Texture Analysis in Materials Science. Mathematical Methods,. Ed Butterworths (1982). ISSN 0-408-10642-5.

Google Scholar

[6] V. Branger, M.H. Mathon, T. Baudin, and R. Penelle, Neutron Diffraction Study of Stored Energy in the Cold Rolled Fe 53%-Ni Alloy in Proceedings of the 21 st Risø International Symposium on Materials Science. Ed. N. Hansen, X. Huang, D. Juul Jensen, E.M. Lauridsen, T. Leffers, W. Pantleon, T.J. Sabin and J.A. Wert. Denmark (2000).

DOI: 10.1016/s1359-6462(01)01245-3

Google Scholar

[7] N. Rajmohan, Y. Hayakawa, J.A. Szpunar and J.H. Root, The determination of orientation-dependent stored energy using neutron diffraction. Physica B 241-243 (1998) 1225-1227.

DOI: 10.1016/s0921-4526(97)00834-x

Google Scholar

[8] T. Baudin, D. Solas, A.L. Etter, D. Ceccaldi and R. Penelle, Simulation of primary recrystallization from TEM observations and neutron diffraction measurements, Scripta Materialia, 51 (5), 427-430 (2004).

DOI: 10.1016/j.scriptamat.2004.05.001

Google Scholar

[9] R. Penelle and T. Baudin, Primary Recrystallization of Invar, Fe-36%Ni Alloy: Origin and Development of the Cubic Texture Advanced Engineering Materials 12-10 (2010) 1047–1052.

DOI: 10.1002/adem.201000077

Google Scholar

[10] J. Rodríguez-Carvajal, Information on http: /www. ill. eu/sites/fullprof/php/tutorials. html. Documents about microstructure. Study of Micro-Structural Effects by Powder Diffraction Using the Program FULLPROF.

Google Scholar

[11] J.I. Langford, R. Delhez, Th.H. de Keijser and E. Mittemeijer, Profile Analysis for Microcrystalline Properties by the Fourier and Other Methods, Aust. J. Phys., 41, (1988) 173-187.

DOI: 10.1071/ph880173

Google Scholar

[12] Th. H. de Keijser, J.I. Langford, E.J. Mittemeije and. A. B. P. Vogels, Use of the Voigt Function in a Single-Line Method for the Analysis of X-ray Diffraction Line Broadening, J. Appl. Cryst. 15 (1982) 308-314.

DOI: 10.1107/s0021889882012035

Google Scholar

[13] G. R. Stibitz, Energy and Lattice spacing in strained solids, Phys Rev 49 (1937) 872.

Google Scholar

[14] M. Ceretti and A. Lodini, « Analyse des Contraintes Résiduelles par Diffraction de Rayons X et des Neutrons » . Editeurs Alain Lodini et Michel Perrin. Évaluation des Contraintes Résiduelles à partir de la Mesure des Microdéformations dans les Matériaux Polycristallins. Ed. Commissariat à l'Énergie Atomique. France (1994).

DOI: 10.1051/978-2-7598-0863-2.c007

Google Scholar

[15] H. Landolt and R. Börnstein , New Series III/29a (Ed by D. F. Nelson) 1. 2. 1 Elastic constants Sρ, σ, Cρ, σ. Cubic system Alloys, Table 4, p.29 Springer Verlag, Berlin. SpringerMaterials - The Landolt-Börnstein Database. (1992).

DOI: 10.1007/10046537_38

Google Scholar

[16] Information on http: /esfm. ipn. mx/~fcruz/FPG-SEDF. zip.

Google Scholar

[17] K. Pawlik, and P. Ozga, LaboTex: The Texture Analysis Software,. Information on http: /www. labosoft. com. pl/index. htm.

Google Scholar