CVD Growth of 3C-SiC on 4H-SiC Substrate

Article Preview

Abstract:

The hetero epitaxial growth of 3C-SiC on nominally on-axis 4H-SiC is reported. A horizontal hot-wall CVD reactor working at low pressure is used to perform the growth experiments in a temperature range of 1200-1500 °C with the standard chemistry using silane and propane as precursors carried by a mix of hydrogen and argon. The optimal temperature for single-domain growth is found to be about 1350 °C. The ramp up-conditions and the gas-ambient atmosphere when the temperature increases are key factors for the quality of the obtained 3C layers. The best pre-growth ambient found is carbon rich environment; however time of this pre-treatment is crucial. A too high C/Si ratio during growth led to polycrystalline material whereas for too low C/Si ratios Si cluster formation is observed on the surface. The addition of nitrogen gas is also explored.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

16-21

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.F. Ferry, Phys. Rev. B 12 (1975) 2361-2369

Google Scholar

[2] W.E. Nelson, F.A. Halden, and A. Rosengreen; J. Appl. Phys. 37 (1966) 333-336

Google Scholar

[3] M. Soueidan, G. Ferro, O. Kim-Hak, F. Cauwet, B. Nsouli, Crystal Growth & Design 8 (2008) 1044-1050

DOI: 10.1021/cg070499+

Google Scholar

[4] V. Jokubavicius, R. Liljedahl, Y. Ou, H. Ou, S. Kamiyama, R. Yakimova, and M. Syväjärvi, Mat. Sc. For 679-680 (2011) 103-106

DOI: 10.4028/www.scientific.net/msf.679-680.103

Google Scholar

[5] K. Nishino, T. Kimoto, H. Matsunami, Jpn. J. Appl. Phys. 36 (1997) 5202-5207

Google Scholar

[6] M. V. S. Chandrashekhar, C. I. Thomas, J. Lu, M. G. Spencer, Appl. Phys. Lett. 90 (2007) 173509-1_173509-3

Google Scholar

[7] J. Lu, M.V.S. Chandrashekhar, J.J. Parks, D.C. Ralph and M.G. Spencer, App. Phys. Lett. 94 (2009) 162115-1_162115-3

Google Scholar

[8] S. Leone, F.C. Beyer, A. Henry, O. Kordina and E. Janzén; Physica status solidi. Rapid research letters – 4 (11) (2010) 305-307

DOI: 10.1002/pssr.201004271

Google Scholar

[9] V.M. Polyakov and F. Schwierz, J. Appl. Phys. 98 (2005) 023709-1_023709-6

Google Scholar

[10] A. A. Lebedev, A. M. Strel'chuk, N. S. Savkina, E. V. Bogdanova, A. S. Tregubova, A. N. Kuznetsov, and L. M. Sorokin, Techn. Phys. Lett., 28 (2002) 1011–1014.

DOI: 10.1134/1.1535487

Google Scholar

[11] S. Nishino, J. A. Powell, and H. A. Will, Appl. Phys. Lett. 42 (1983) 460-463

Google Scholar

[12] S. Roy, M. Portail, T. Chassagne, J. M. Chauveau, P. Vennéguès and M. Zielinski, Appl. Phys. Lett. 95 (2009) 081903

Google Scholar

[13] S. Leone, F.C. Beyer, A. Henry, O. Kordina and E. Janzén, AIP Conference Proceedings 1292 (2010) 7-10.

Google Scholar

[14] G. Ferro, Mater. Sci. Forum 645–648 (2010) 49-54

Google Scholar

[15] J. Camassel, S. Juillaguet, M. Zielinski, and C. Balloud, Chem. Vap. Dep. 12 (2006) 549

Google Scholar

[16] G. Zoulis, J. Sun, R. Vasiliauskas, J. Lorenzzi, H. Peyre, M. Syväjärvi, G. Ferro, S. Juillaguet, R. Yakimova and J. Camassel, this proceeding

DOI: 10.4028/www.scientific.net/msf.711.149

Google Scholar