[1]
A. Schoner, M. Krieger, G. Pensl, M. Abe, H. Nagasawa, Fabrication and characterization of 3C-SiC-based MOSFETs, Chem. Vapor Deposition 12 (2006) 523-526.
DOI: 10.1002/cvde.200606467
Google Scholar
[2]
E. Okuno, T. Endo, J. Kawai, T. Sakakibara, S. Onda, (11–20) face channel MOSFET with low on-resistance, Mater. Sci. Forum 600–603 (2009) 1119-1122.
DOI: 10.4028/www.scientific.net/msf.600-603.1119
Google Scholar
[3]
T. Ohshima, K.K. Lee, Y. Ishida, K. Kojima, Y. Tanaka, T. Takahashi, M. Yoshikawa, H. Okumura, K. Arai, T. Kamiya, The electrical characteristics of metal-oxide- semiconductor field effect transistors fabricated on cubic silicon carbide, Jpn. J. Appl. Phys. 42 (2003) L625-627.
DOI: 10.1143/jjap.42.l625
Google Scholar
[4]
W.F. Knippenberg, Growth phenomena in silicon carbide, Philips Res. Repts. 1963, 18, 161-274.
Google Scholar
[5]
T. Nishiguchi, M. Nakamura, K. Nishio, T. Isshiki, S. Ohshima, and S. Nishino, Supression of the Twin Formation in CVD Growth of (111) 3C-SiC on (110) Si Substrates, Materials Science Forum 483-485 (2005)193-196.
DOI: 10.4028/www.scientific.net/msf.483-485.193
Google Scholar
[6]
A. Konnoa, Yu. Naritab, T. Itoa, K. Yasuic, H. Nakazawad, T. Endohe, and M. Suemitsua, Low-temperature Heteroepitaxial Growth of 3C-SiC(111) on Si(110) Substrate Using Monomethylsilane, ECS Transactions 3 (2006) 449-455.
DOI: 10.1149/1.2357236
Google Scholar
[7]
M. Reyes, Y. Shishkin, S. Harvey, and S. E. Saddow, Development of a high growth rate 3C-SiC on Si CVD process, Mater. Res. Soc. Symp. Proc. 892 (2006) 79- 84.
DOI: 10.1557/proc-0911-b08-01
Google Scholar
[8]
M. Portail, M. Zielinski, T. Chassagne, S. Roy, M. Nemoz, Comparative study of the role of the nucleation stage on the final crystalline quality of (111) and (100) silicon carbide films deposited on silicon substrates, J. Appl. Phys. 105 (2009) 083505 -9.
DOI: 10.1063/1.3089215
Google Scholar
[9]
H. Nagasawa, K. Yagi, T. Kawahara, 3C–SiC hetero-epitaxial growth on undulant Si(001) substrate, J. Cryst. Growth 237 (2002) 1244-9.
DOI: 10.1016/s0022-0248(01)02233-3
Google Scholar
[10]
H. Nagasawa, T. Kawahara, K. Yagi and N. Hatta, Propagation of stacking faults in 3C-SiC, Mater. Sci. Forum 679-680 (2011) 282-285.
DOI: 10.4028/www.scientific.net/msf.679-680.282
Google Scholar
[11]
Ph. G. Neudeck, A. J. Trunek, D. J. Spry, J. A. Powell, H. Du, M. Skowronski, X. R. Huang, and M. Dudley, CVD Growth of 3C-SiC on 4H/6H Mesas, Chem. Vap. Deposition 12 (2006) 531–540.
DOI: 10.1002/cvde.200506460
Google Scholar
[12]
S. Leone, F.C. Beyer, A. Henry, O.Kordina, E. Janzén, Cloride-based CVD of 3C-SiC epitaxial layers on 6H (0001)SiC, Physica Status Solidi-Rapid Research Letters 4 (2010) 305-307.
DOI: 10.1002/pssr.201004271
Google Scholar
[13]
T. Ujihara, R. Maekawa, R. Tanaka, K. Sasaki, K. Kuroda, Y. Takeda, Solution growth of high-quality 3C–SiC crystals, J. Cryst. Growth 310 (2008) 1438-1442.
DOI: 10.1016/j.jcrysgro.2007.11.210
Google Scholar
[14]
J. Eid, J.L. Santailler, B. Ferrand, A. Basset, A. Passero, R. Lewandowska, C. Balloud, J. Camassel, Improvement of cubic silicon carbide crystals grown from solution, Superlatt. Microstr. 40 (2006) 201-204.
DOI: 10.1016/j.spmi.2006.06.009
Google Scholar
[15]
T. Ujihara, K. Seki, R. Tanaka, S. Kozawa, K. Morimoto, K. Sasaki, Y. Takeda, High-quality and large-area 3C–SiC growth on 6H–SiC(0 001) seed crystal with top-seeded solution method, J. Crystal Growth (2010).
DOI: 10.1016/j.jcrysgro.2010.10.148
Google Scholar
[16]
M. Soueidan, G. Ferro, A vapor–liquid–solid mechanism for growing 3C-SiC single-domain layers on 6H–SiC(0001), Adv. Funct. Mater. 16 (2006) 975-979.
DOI: 10.1002/adfm.200500597
Google Scholar
[17]
M. Soueidan, G. Ferro, O. Kim-Hak, F. Cauwet, B. Nsouli, Vapor–liquid–solid growth of 3C-SiC on alpha-SiC substrates. 1. Growth mechanism, Cryst. Growth Des. 8 (2008) 1044-1050.
DOI: 10.1021/cg070499+
Google Scholar
[18]
O. Kim-Hak, G. Ferro, J. Dazord, M. Marinova, J. Lorenzzi, E. Polychroniadis, P. Chaudou¨ et, D. Chaussende, P. Miele, Study of the 3C–SiC nucleation from a liquid phase on a C face 6H–SiC substrate, J. Cryst. Growth 311 (2009) 2385-1388.
DOI: 10.1016/j.jcrysgro.2009.01.132
Google Scholar
[19]
D. Chaussende, L. Latu-Romain, L. Auvray, M. Ucar, M. Pons, R. Madar, Mater. Sci. Forum 483 (2005) 225-228.
DOI: 10.4028/www.scientific.net/msf.483-485.225
Google Scholar
[20]
M. Syväjärvi and R. Yakimova, Silicon carbide epitaxial layer and method of producing the same, Application number: PCT/EP2006/008130; US 11/990 335USA.
Google Scholar
[21]
M. Syväjärvi and R. Yakimova, Sublimation epitaxial growth of hexagonal and cubic SiC, in P. Bhattacharya, R. Fornari and H. Kamimura (Eds), Encyclopedia - The comprehensive Semiconductor Science & Technology (SEST), Elsevier, ISBN 978-0-444-53144-5, to be published (2011).
DOI: 10.1016/b978-0-44-453153-7.00092-4
Google Scholar
[22]
A. A. Lebedev and S. Yu. Davydov, A Vacancy Model of the Heteropolytype Epitaxy of SiC, Semiconductors 39 (2005) 277–280.
DOI: 10.1134/1.1882785
Google Scholar
[23]
R. Vasiliauskas, M. Marinova, M. Syväjärvi, A. Mantzari, A. Andreadou, J. Lorenzzi, G. Ferro, E.K. Polychroniadis, R. Yakimova, Sublimation growth and structural characterization of 3C-SiC on hexagonal and cubic SiC seeds, Mater. Sci. Forum 645-648 (2010) 175-178.
DOI: 10.4028/www.scientific.net/msf.645-648.175
Google Scholar
[24]
R. Yakimova, G. Reza Yazdi, Nut Sritirawisarn, and Mikael Syväjärvi, Structure Evolution of 3C-SiC on Cubic and Hexagonal Substrates, Mater. Sci. Forum 527-529 (2006) 283-286.
DOI: 10.4028/www.scientific.net/msf.527-529.283
Google Scholar
[25]
J. Kräußlich, A. Bauer, B. Wunderlich, K. Goetz, Lattice parameter measurements of 3C-SiC thin films grown on 6H-SiC(0001) substrate crystals, Mater. Sci. Forum 389-393 (2001) 319-322.
DOI: 10.4028/www.scientific.net/msf.353-356.319
Google Scholar
[26]
R. Vasiliauskas, M.Marinova , M.Syväjärvi, R.Liljedahl, G.Zoulis, J.Lorenzzi, G.Ferro, S. Juillaguet, J.Camassel, E.K. Polychroniadis, R.Yakimova Effect of initial substrate conditions on growth of cubic silicon carbide, J. Crystal Growth 324 (2011) 7-14.
DOI: 10.1016/j.jcrysgro.2011.03.024
Google Scholar
[27]
J. Eriksson, M.H. Weng, F. Roccaforte, F. Giannazzo, S. Leone, and V. Raineri, Appl. Phys. Lett. 95, (2009) 081907-1 - 081907-3.
DOI: 10.1063/1.3211965
Google Scholar
[28]
J. Eriksson, F. Roccaforte, S. Reshanov, S. Leone, F. Giannazzo, R. LoNigro, P. Fiorenza, and V. Raineri, Nanoscale characterization of electrical transport at metal/3C-SiC interfaces, Nanoscale Research Letters 6 (2011) 120-124.
DOI: 10.1186/1556-276x-6-120
Google Scholar
[29]
G. Cicero, A. Catellani, G. Galli, Atomic control of water interaction with biocompatible surfaces: the case of SiC(001), Phys. Rev. Lett., 93 (2004) 016102-05.
DOI: 10.1103/physrevlett.93.016102
Google Scholar
[30]
G. Beaucarne, A. S. Brown, M. J. Keevers, R. Corkish and M. A. Green, Semiconductors: an Opportunity for Very-High-Efficiency Solar Cells? Prog. Photovolt: Res. Appl. 10 (2002) 345–353.
DOI: 10.1002/pip.433
Google Scholar