Laser-Doped SiC as Wireless Remote Gas Sensor Based on Semiconductor Optics

Abstract:

Article Preview

An uncooled SiC-based electro-optic device is developed for gas sensing applications. P-type dopants Ga, Sc, P and Al are incorporated into an n-type crystalline 6H-SiC substrate by a laser doping technique for sensing CO2, CO, NO2 and NO gases, respectively. Each dopant creates an acceptor energy level within the bandgap of the substrate so that the energy gap between this acceptor level and the valence band matches the quantum of energy emitted by the gas of interest. The photons of the gas excite electrons from the valence band to the acceptor level, which alters the electron density in these two states. Consequently, the refractive index of the substrate changes, which, in turn, modifies the reflectivity of the substrate. This change in reflectivity represents the optical signal of the sensor, which is probed remotely with a laser such as a helium-neon laser. Although the midwave infrared (3-5 mm) band is studied in this paper, the approach is applicable to other spectral bands.

Info:

Periodical:

Materials Science Forum (Volumes 717-720)

Edited by:

Robert P. Devaty, Michael Dudley, T. Paul Chow and Philip G. Neudeck

Pages:

1195-1198

DOI:

10.4028/www.scientific.net/MSF.717-720.1195

Citation:

G. Lim et al., "Laser-Doped SiC as Wireless Remote Gas Sensor Based on Semiconductor Optics", Materials Science Forum, Vols. 717-720, pp. 1195-1198, 2012

Online since:

May 2012

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.