ECR-Ectching of Submicron and Nanometer Sized 3C-SiC(100) Mesa Structures

Article Preview

Abstract:

Anisotropic etching processes for mesa structure formation using fluorinated plasma atmospheres in an electron cyclotron resonance (ECR) plasma etcher were studied on Novasic substrates with 10 µm thick 3C-SiC(100) grown on Si(100). To achieve reasonable etching rates, a special gas inlet system suitable for injecting SF6 into the high density downstream Ar ECR plasma was designed. The influence of the etching mask material on the sidewall morphology was investigated. Masking materials with small grain sizes are preferable to achieve a desired shape. The evolution of the mesa form was investigated in dependence on the gas composition, the applied bias, the pressure and the composition of the gas atmosphere. The achieved sidewall slope was 84.5 deg. The aspect ratios of the fabricated structures in the developed residue free ECR plasma etching process were between 5 and 10. Mesa structures aligned to [100] and [110] directions were fabricated.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 717-720)

Pages:

901-904

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.W. Palmour, R.F. Davis, T.M. Wallett and K.B. Bhashin: J. Vac. Sci. Technol. A, Vol. 4 (3) (1986), p.590.

Google Scholar

[2] D.F. McLane and J.R. Flemish: Appl. Phys. Lett., Vol. 68 (1996), p.3755.

Google Scholar

[3] G. McDaniel, J.W. Lee, E.S. Lambers, S.J. Pearton, P.H. Holloway, F. Ren, J.M. Grow, M. Bhaskaran and R.G. Wilson: J. Vac. Sci. Technol. A, Vol. 15 (1997), p.885.

Google Scholar

[4] J.J. Wang, E.S. Lambers, S.J. Pearton, M. Ostling, C. -M- Zetterling, J.M. Grow, F. Ren, R.J. Shul: Solid-State Electronics, Vol. 42 (1998), p.2283.

DOI: 10.1016/s0038-1101(98)00226-3

Google Scholar

[5] D.W. Kim, H.Y. Lee, B.J. Park, H.S. Kim, Y.J. Sung, S.H. Chae, Y.W. Ko and G.Y. Yeom: Thin Solid Films, 447-448 (2004), p.100.

DOI: 10.1016/j.tsf.2003.09.030

Google Scholar

[6] Ch. Förster, V. Cimalla, V. Lebedev, J. Pezoldt, K. Brueckner, R. Stephan, M. Hein, E. Aperatitis and O. Ambacher, Phys. Status Solidi A 202 (2006), p.1829.

DOI: 10.1002/pssa.200565232

Google Scholar

[7] G.M. Benheim and L.J. Evans: Mater. Res. Soc. Symp. Proc., Vol. 911 (2006), p.0911-B10-15.

Google Scholar

[8] F. Niebelschütz, Th. Stauden, K. Tonisch and J. Pezoldt: Mater. Sci. Forum Vol. 645-648 (2010), p.849.

DOI: 10.4028/www.scientific.net/msf.645-648.849

Google Scholar

[9] Th. Stauden, F. Niebelschütz, K. Tonisch, V. Cimalla, G. Ecke, Ch. Haupt and J. Pezoldt: Mater. Sci. Forum Vol. 600-603 (2009), p.651.

DOI: 10.4028/www.scientific.net/msf.600-603.651

Google Scholar

[10] F. Niebelschutz, J. Pezoldt, Th. Stauden, V. Cimalla, K. Tonisch, L. Brueckner, M. Hein, O. Ambacher and A. Schober: in: Proc. 2008 Conf. on Optoelectronic and Microelectronic Materials and Devices, COMMAD 2008, IEEE, Piscataway, NJ (2008), p.26.

DOI: 10.1109/commad.2008.4802084

Google Scholar

[11] Ch. Förster, V. Cimalla, R. Kosiba, G. Ecke, P. Weih, O. Ambacher and J. Pezoldt: Mater. Sci. Forum Vol. 457-460 (2004), p.821.

DOI: 10.4028/www.scientific.net/msf.457-460.821

Google Scholar

[12] M. Hofer, Th. Stauden, I.W. Rangelow and J. Pezoldt: Mater. Sci. Forum, Vol. 645-648 (2010), p.841.

DOI: 10.4028/www.scientific.net/msf.645-648.841

Google Scholar

[13] H. Diminger and H. Lütje: Philips Techn. Rev. Vol. 35 (1975), p.199.

Google Scholar