Evaluation of Optical Properties for Nanocrystal Si Dot Layers Fabricated by CVD as a Function of Size Reduction

Article Preview

Abstract:

Raman spectroscopy and photoluminescence were performed in order to understand the optical properties of nanocrystal Si in relation to quantum confinement effects. The nanocrystal Si (nc-Si) dots in the SiO2 layer were fabricated by the H2 plasma treatment and chemical vapour deposition followed by the oxidation of the nc-Si dots surface. The post-annealing was also performed to improve the crystalline quality of nc-Si at 1050 °C for 5 and 10 min. There is a good correlation of the quantum confinement effects between the results of Raman spectroscopy and photoluminescence. The Raman spectra from nc-Si were analysed using the model of Richter et al. As a result, the sizes of the nc-Si dots were consistent with those obtained by transmission electron microscopy and X-ray diffraction. Moreover, the compressive stress in the nc-Si dots were evaluated which was induced by the SiO2 surroundings.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

251-254

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Bhattacharyya and S. Samui, Appl. Phys. Lett. 84. 9 (2004).

Google Scholar

[2] S. G. Cloutier, R. S. Guico, and J. M. Xu, Appl. Phys. Lett. 87. 222104 (2005).

Google Scholar

[3] G. Faraci, S. Gibilisco, and A. R. Pennisi, Phys. Rev. B. 80, 193410 (2009).

Google Scholar

[4] H. Xia, Y. L. He, L. C. Wang, W. Zhang, X. N. Liu, X. K. Zhang, and D. Feng, H. E. Jackson, J. Appl. Phys. 78, 11 (1995).

Google Scholar

[5] H. Richter, Z.P. Wang , and L. Ley. Solid State Commun. 39, 5 (1981).

Google Scholar

[6] Z. Sui, P. P. Leong, and I. P. Herman, G. S. H. and H. Temkin, Appl. Phys. Lett. 60,17 (1992)

Google Scholar

[7] K. Zhang, X. Xie, Phys. Rev. B. 55, 15 (1997).

Google Scholar

[8] A. Kumagai, Y. Numazawa, Y. Murao, ECS ISTC abst, (2004).

Google Scholar

[9] A. Ogura, K. Yamasaki, D. Kosemura, S. Tanaka, I. Chiba, R. Shimidzu, Jpn. J. Appl. Phys, 45, (2006).

Google Scholar

[10] E. Vallat-Sauvain, U. Kroll, J. Meier, A. Shah J. J. Pohl, Appl. Phys. 87, 6 (2000).

Google Scholar

[11] M. Zacharias, L. Tsybeskov, K. D. Hirschman, P.M. Fauchet, J. Bla¨sing, P. Kohlert and P. Veit, J. Non-Cryst. Solids 227-230. 1132 (1998).

DOI: 10.1016/s0022-3093(98)00287-7

Google Scholar

[12] D. Comedi, O. H. Y. Zalloum, E. A. Irving, J. Wojcik, T. Roschuk, M. J. Flynn, and P. Mascher, J. Appl. Phys. 99, 023518 (2006).

DOI: 10.1063/1.2162989

Google Scholar

[13] S. Schuppler, S. L. Friedman, M. A. Marcus, D. L. Adler, and Y. H. Xie, Phys. Rev. B. 52. 7 (1995).

Google Scholar

[14] Y. Kanemitsu, S. Okamoto, M. Otobe, and S. Oda, Phys. Rev. B. 55. 12 (1997).

Google Scholar

[15] G. Ledoux, O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn, and V. Paillard, Phys. Rev. B. 62. 23 (2000).

DOI: 10.1103/physrevb.62.15942

Google Scholar

[16] R. Gupta, Q. Xiong, C. K. Adu, U. J. Kim, P. C. Eklund, Nano Lett., 3, 5 (2003)

Google Scholar

[17] S. Piscanec, M. Cantoro, A. C. Ferrari, J. A. Zapien, Y. Lifshitz, S. T. Lee, S. Hofmann, J. Robertson, Phys. Rev. B.68, 241312 (2003)

DOI: 10.1103/physrevb.68.241312

Google Scholar

[18] G. Viera, S. Huet, L. Boufendi, J. Appl. Phys. 90, 8 (2001).

Google Scholar

[19] G. Faraci, S. Gibilisco, P. Russo, A. R. Pennisi, S. L. Rosa, Phys. Rev. B. 73, 033307 (2006).

Google Scholar

[20] J. Zi, H. Bϋscher, C. Falter, W. Ludwig, K. Zhang, X. Xie, Appl. Phys. Lett. 69. 2 (1996).

Google Scholar

[21] Md. N. Islam, A. Pradhan, S. Kumar, J. Appl. Phys. 98, 24309 (2005).

Google Scholar