XRD Investigation of the Crystalline Quality of Sn Doped β-Ga2O3 Films Deposited by the RF Magnetron Sputtering Method

Article Preview

Abstract:

For the purpose of increasing the conductivity of β-Ga2O3 films, Sn doping in the β-Ga2O3 films has been explored using co-sputtering. Growth of β-Ga2O3 was confirmed by the XRD pattern for the undoped sample. However, it is shown that the Ga2O3 phase is transformed from the β to the γ phase by Sn doping, because of the increase of the phase transition temperature from the γ to the β phase. To improve the crystalline quality, additional annealing at 900°C for 60 min is performed to the Sn doped film. The XRD peaks corresponding with β-Ga2O3 could be confirmed after the additional annealing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

269-272

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Brammer, W. Reetz, N. Senoussaoui, O. Vetterl, O. Kluth, B. Rech, H. Stiebig, H. Wagner, Solar Energy Materials & Solar Cells 74, (2002) 469-478.

DOI: 10.1016/s0927-0248(02)00109-5

Google Scholar

[2] A. I. Martinez. D.R. Acosta, Thin Solid Films 483 (2005) 107-113.

Google Scholar

[3] H. Hosono, Thin Solid Films, 515 (2007) 6000-6014.

Google Scholar

[4] N. Ueda, H. Hosono, R. Waseda, and H. Kawazoe, Appl. Phys. Lett., 70 (1997) 3561-3563.

Google Scholar

[5] G.K. Flingelli, M.M. Fleischer, H. Meixner, Sensors and Actuators, B48 (2998) 258-262.

Google Scholar

[6] Y. Tomm, J.M. Ko, A. Yoshikawa, and T. Fukuda, Solar Energy Mater. & Solar Cells, 66 (2001) 369-374.

DOI: 10.1016/s0927-0248(00)00196-3

Google Scholar

[7] M. Orita, H. Ohta, and M. Hirano, and H. Hosono, Appl. Phys. Lett., 77 (2000) 4166-4168.

DOI: 10.1063/1.1330559

Google Scholar

[8] H. H. Tippins, Phys. Rev., 140 (1965) A316-A318.

Google Scholar

[9] L. Binet, and D. Gourier, J. Phys. Chem. Solids, 59 (1998) 1241-1249.

Google Scholar

[10] T. Matsumoto, M. Aoki, A. Kinoshita, and T. Aono, Jpn. J. Appl. Phys., 13 (1974) 1578-1582.

Google Scholar

[11] R. Roy, V.G. Hill, E.F. Osborn, J. Am. Chem. Soc., 74 (1952) 719-722.

Google Scholar

[12] K. Takakura, T. Kudou, K. Hayama, K. Shigaki, H. Ohyama, J. Mater. Sci., 19 (2008) 167-169.

Google Scholar

[13] K. Takakura, D. Koga, H. Ohyama, J. M. Rafi, Y. Kayamoto, M. Shibuya, H. Yamamoto, J. Vanhellemont, Physica B, 404 (2009) 4854-4857.

DOI: 10.1016/j.physb.2009.08.167

Google Scholar

[14] K. Takakura, S. Funasaki, I. Tsunoda, H. Ohyama, D. Takeuchi, T. Nakashima, M. Shibuya, K. Murakami, E. Simoen, C. Claeys, to be published in Physica B.

DOI: 10.1016/j.physb.2011.08.061

Google Scholar

[15] C. Otero Arean, A. Lopez Bellan, M. Penarroya Mentruit, M. Rodriguez Delgado, G. Turnes Palomino, Microporous and Mesoporous Materials, 40 (2000) 35-42.

DOI: 10.1016/s1387-1811(00)00240-7

Google Scholar

[16] Yidong Hou, Ling Wu, Xinchen Wang, Zhengxin Ding, Zhaohui Li, Xianzhi Fu, Journal of Catalysis 250, (2007) 12-18.

Google Scholar