Electrical Properties of Fluorine Doped Tin Dioxide Film Grown by Spray Method

Article Preview

Abstract:

Low resistivity, fluorine-doped tin dioxide thin films were deposited on glass substrates by spray pyrolysis. These films were prepared with different F-doping concentrations from 0 to 33 mol%. The structure of these films was investigated by X-ray diffraction and the surface morphology by Scanning Electron Microscopy. Sample compositions were evaluated using X-ray Photoemission Spectroscopy. According to these results, the films were all polycrystalline with tetragonal crystal structures. Hall measurements were used to probe the dependence of the resistivity on temperature for un-doped SnO2 and F-doped SnO2. The resistivity of un-doped SnO2 slightly increased with increasing temperature. Conversely, the resistivity of F-doped SnO2 slightly decreased with increasing temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

281-284

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. S. Patil, S. B. Sadale, S. H. Mujawar, P. S. Shinde, P. S. Chigare, Appl. Surf. Sci. 253 (2007) 8560.

Google Scholar

[2] B. Yea, H. Sasaki, T. Osaki, K. Sugahara, R. Konishi, Jpn. J. Appl. Phys., 38 (1999) 2103.

Google Scholar

[3] I. H. Kim, J. H. Ko, D. Kim, K. S. Lee, T. S. Lee, J. h. Jeong, B. Cheong, Y. J. Baik, and W. M. Kim, Thin Solid Films 515 (2006) 2475.

DOI: 10.1016/j.tsf.2006.07.020

Google Scholar

[4] B. Yea, H. Sasaki, T. Osaki, K. Suugahara, R. Konishi, Jpn. J. Appl. Phys 38 (1999) 2103.

Google Scholar

[5] S. Tamura, T. Ishida, H. Magara, T. Mihara, O. Tabata, T. Tatsuta, Thin Solid Films 343-344 (1999) 142.

DOI: 10.1016/s0040-6090(98)01648-4

Google Scholar

[6] J. B. Yadav, R. B. Patil, R. K. Puri, V. Puri, Mater. Sci. Eng. B 139 (2007) 69.

Google Scholar

[7] T. H. Fang, W. J. Chang, Appl. Surf. Sci. 220 (2003) 175.

Google Scholar

[8] S. Zhao, P. Wei, S. Chen, Sensors and Actuators B 62 (2000) 117.

Google Scholar

[9] A. P. Rizzato, L. Broussous, C. V. Santilli, S. H. Pulcinelli, A. F. Craievich, J. Non-Cryst. Solids 284 (2001) 61.

DOI: 10.1016/s0022-3093(01)00380-5

Google Scholar

[10] C. H. Han, S. D. Han, J. Gwak, S. P. Khatkar, Mater. Lett. 61 (2007) 1701.

Google Scholar

[11] M. Soliman, M. M. Hussein, S. El-Atawy, M. El-Gamal, Renew. Energ. 23 (2001) 463.

Google Scholar

[12] K. S. Ramaiah, V. S. Raja, Appl. Surf. Sci. 253 (2006) 1451.

Google Scholar

[13] M. Oshima, K. Yoshino, J .Electron. Mater, 39 (2010) 819.

Google Scholar

[14] M. Oshima, K. Yoshino, Jpn. J. Appl. Phys. 50 (2011) 05FB15.

Google Scholar

[15] ICDD No.00-041-1445.

Google Scholar

[16] B. Thangaraju, Thin Solid Films 402 (2002) 71.

Google Scholar

[17] C. Agashe, S. S. Major, J. Mater. Sci. 31 (1996) 2965.

Google Scholar

[18] A. V. Moholkar, S. M. Pawar, K. Y. Rajpure, C. H. Bhosale, Mater. Lett. 61 (2007) 3030.

Google Scholar

[19] L. Kover, G. Moretti, Z. Kovacs, R. Sanjines, I. Cserny, G. Margaritondo, J. Palinkas, H. Adachi, J. Vac. Sci. Technol. A 13 (1995) 1382.

Google Scholar

[20] E. Shanthi, A. Banerjee, V. Dutta, K. L. Chopra, J Appl. Phys. 53 (1982) 1615.

Google Scholar

[21] E. Elangovan, K. Ramamurthi, Appl. Surf. Sci. 249 (2005) 183.

Google Scholar