Improvement of the Crystalline Quality of β-Ga2O3 Films by High-Temperature Annealing

Article Preview

Abstract:

For the purpose of improving the crystalline quality of undoped and Si doped β-Ga2O3 films, high temperature annealing at 900°C was performed. The crystalline quality of the films investigated using scanning electron microscopy and X-ray diffraction. Also the conductivity of the films is compared before and after the annealing. After the 900°C annealing, the XRD peaks intensity corresponding to β-Ga2O3 is increased. This result indicates that the crystalline quality improves by the high temperature annealing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

273-276

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Brammer, W. Reetz, N. Senoussaoui, O. Vetterl, O. Kluth, B. Rech, H. Stiebig, H. Wagner, Solar Energy Materials & Solar Cells, 74 (2002) 469-478.

DOI: 10.1016/s0927-0248(02)00109-5

Google Scholar

[2] A .I. Martinez. D.R. Acosta, Thin Solid Films, 483 (2005) 107-113.

Google Scholar

[3] H. Hosono, Thin Solid Films, 515 (2007) 6000-6014.

Google Scholar

[4] H. H. Tippins, Phys. Rev., 140 (1965) A316-A318.

Google Scholar

[5] T. Matsumoto, M. Aoki, A. Kinoshita, and T. Aono, Jpn. J. Appl. Phys., 13 (1974) 1578-1582.

Google Scholar

[6] L. Binet, and D. Gourier, J. Phys. Chem. Solids, 59 (1998) 1241-1249.

Google Scholar

[7] M. Orita, H. Ohta, and M. Hirano, and H. Hosono, Appl. Phys. Lett., 77 (2000) 4166-4168.

DOI: 10.1063/1.1330559

Google Scholar

[8] N. Ueda, H. Hosono, R. Waseda, and H. Kawazoe, Appl. Phys. Lett., 70 (1997) 3561-3563.

Google Scholar

[9] Y. Tomm, J. M. Ko, A. Yoshikawa, and T. Fukuda, Solar Energy Mater. & Solar Cells, 66 (2001) 369-374.

DOI: 10.1016/s0927-0248(00)00196-3

Google Scholar

[10] G.K. Flingelli, M. M. Fleischer, H. Meixner, Sensors and Actuators B, 48 (2998) 258-262.

Google Scholar

[11] K. Takakura, T. Kudou, K. Hayama, K. Shigaki, H. Ohyama, J. Mater. Sci., 19 (2008) 167-169.

Google Scholar

[12] K. Takakura, D. Koga, H. Ohyama, J. M. Rafi, Y. Kayamoto, M. Shibuya, H. Yamamoto, J. Vanhellemont, Physica B, 404 (2009) 4854-4857.

DOI: 10.1016/j.physb.2009.08.167

Google Scholar

[13] K. Takakura, S. Funasaki, I. Tsunoda, H. Ohyama, D. Takeuchi, T. Nakashima, M. Shibuya, K. Murakami, E. Simoen, C. Claeys, to be published in Physica B.

DOI: 10.1016/j.physb.2011.08.061

Google Scholar

[14] T.K. Yong, S.S. Yap, György Sáfrán, T.Y. Tou, Applied Surface Science,, 253 (2007) 4955-4959.

DOI: 10.1016/j.apsusc.2006.11.008

Google Scholar

[15] M. Coisson, S.N. Kane, P. Tiberto, F. Vinai, Journal of Magnetism and Magnetic Materials, 271 (2004) 312–317.

DOI: 10.1016/j.jmmm.2003.09.038

Google Scholar

[16] R. Roy, V. G. Hill and E. F. Osborn, J. Am. Chem. Soc., 74 (1952) 719-722.

Google Scholar