Bottom-Up Formation of Vertical Free-Standing Semiconductor Nanowires Hybridized with Ferromagnetic Nanoclusters

Article Preview

Abstract:

The author introduces and summarizes the results on bottom-up formation and structural characterizations obtained so far for the MnAs nanoclusters and MnAs/semiconductor nanowire hybrids. First, MnAs nanoclusters were grown by selective-area metal-organic vapor phase epitaxy. They had a hexagonal NiAs-type crystal structure. Their <00(0)1> direction was parallel to <111>B direction of zinc-blende-type GaAs substrates. Hybrid MnAs/GaAs nanowires, subsequently, were fabricated by combining selective-area metal-organic vapor phase epitaxy of GaAs nanowire templates and endotaxial MnAs nanoclustering on them. MnAs nanoclusters ordered at six ridges of hexagonal GaAs nanowires were formed possibly owing to more atomic steps between {0-11} crystal facets. In the case of hybrid MnA/InAs nanowires, MnAs nanoclusters were not formed only on the {0-11} side-walls, and/or ridges between them, but on the top {111}B crystal facets of hexagonal InAs nanowires. MnAs nanoclusters were formed much deeper into the InAs nanowires than into the GaAs nanowires. These facts are possibly due to the InAs nanowires are thermally less stable than the GaAs nanowires. Some of the hybrid MnA/InAs nanowires were bent at the parts where the MnAs nanoclusters were grown into the host nanowires mainly owing to the strain effects.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

1990-1995

Citation:

Online since:

May 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. N. Hai, S. Ohya, M. Tanaka, S. E. Barnes, S. Maekawa, Electromotive Force and Huge Magnetoresistance in Magnetic Tunnel Junctions, Nature 458 (2009) 489-493.

DOI: 10.1038/nature07879

Google Scholar

[2] H. -J. Choi, H. -K. Seong, J. Chang, K. -I. Lee, Y. -J. Park, J. -J. Kim, S. -K. Lee, R. He, T. Kuykendall, P. Yang, Single-Crystalline Diluted Magnetic Semiconductor GaN: Mn Nanowires, Adv. Mater. 17 (2005) 1351-1356.

DOI: 10.1002/adma.200401706

Google Scholar

[3] D. G. Ramlan, S. J. May, J. G. Zheng, J. E. Allen, B. W. Wessels, L. J. Lauhon, Ferromagnetic Self-Assembled Quantum Dots on Semiconductor Nanowires, Nano Lett. 6 (2006) 50-54.

DOI: 10.1021/nl0519276

Google Scholar

[4] H. C. Jeon, T. W. Kang, T. W. Kim, Y. -J. Yu, W. Jhe, S. A. Song, Magnetic and Optical Properties of (Ga1−xMnxAs) Diluted Magnetic Semiconductor Quantum Wires with Above Room Ferromagnetic Transition Temperature, J. Appl. Phys. 101 (2007) 023508.

DOI: 10.1063/1.2422914

Google Scholar

[5] A. Rudolph, M. Soda, M. Kiessling, T. Wojtowicz, D. Schuh, W. Wegscheider, J. Zweck, C. Back, E. Reiger, Ferromagnetic GaAs/GaMnAs Core-Shell Nanowires Grown by Molecular Beam Epitaxy, Nano Lett. 9 (2009) 3860-3866.

DOI: 10.1021/nl9020717

Google Scholar

[6] H. S. Kim, Y. J. Cho, K. J. Kong, C. H. Kim, G. B. Chung, J. Park, J. Y. Kim, J. Yoon, M. H. Jung, Y. Jo, B. Kim, J. P. Ahn, Room-Temperature Ferromagnetic Ga1-xMnxAs (x ≤ 0. 05) Nanowires: Dependence of Electronic Structures and Magnetic Properties on Mn Content, Chem. Mater. 21 (2009).

DOI: 10.1021/cm8033388

Google Scholar

[7] M. F. H. Wolff, D. Görlitz, K. Nielsch, M. E. Messing, K. Deppert, Synthesis and Magnetic Characterization of MnAs Nanoparticles via Nanoparticle Conversion, Nanotechnology 22 (2011) 055602.

DOI: 10.1088/0957-4484/22/5/055602

Google Scholar

[8] C. Borschel, M. E. Messing, M. T. Borgström, W. Paschoal, Jr., J. Wallentin, S. Kumar, K. Mergenthaler, K. Deppert, C. M. Canali, H. Pettersson, L. Samuelson, C. Ronning, A New Route toward Semiconductor Nanospintronics: Highly Mn-Doped GaAs Nanowires Realized by Ion-Implantation under Dynamic Annealing Conditions, Nano Lett. 11 (2011).

DOI: 10.1021/nl2021653

Google Scholar

[9] T. Tanaka, K. Tomioka, S. Hara, J. Motohisa, E. Sano, T. Fukui, Vertical Surrounding Gate Transistors Using Single InAs Nanowires Grown on Si Substrates, Appl. Phys. Express 3 (2010) 025003.

DOI: 10.1143/apex.3.025003

Google Scholar

[10] S. Hara, D. Kawamura, H. Iguchi, J. Motohisa, T. Fukui, Self-Assembly and Selective-Area Formation of Ferromagnetic MnAs Nanoclusters on Lattice-Mismatched Semiconductor Surfaces by MOVPE, J. Cryst. Growth 310 (2008) 2390-2394.

DOI: 10.1016/j.jcrysgro.2007.12.026

Google Scholar

[11] T. Wakatsuki, S. Hara, S. Ito, D. Kawamura, T. Fukui, Growth Direction Control of Ferromagnetic MnAs Grown by Selectively-Area Metal-Organic Vapor Phase Epitaxy, Jpn. J. Appl. Phys. 48 (2009) 04C137.

DOI: 10.1143/jjap.48.04c137

Google Scholar

[12] K. Komagata, S. Hara, S. Ito, T. Fukui, Ferromagnetic MnAs Nanocluster Composites Position-Controlled on GaAs (111)B Substrates toward Lateral Magnetoresistive Devices, Jpn. J. Appl. Phys. 50 (2011) 06GH01.

DOI: 10.1143/jjap.50.06gh01

Google Scholar

[13] M. Yatago, H. Iguchi, S. Sakita, S. Hara, Growth and Characterization of MnAs Nanoclusters Embedded in GaAs Nanowires by Metal–Organic Vapor Phase Epitaxy, Jpn. J. Appl. Phys. 51 (2012) 02BH01.

DOI: 10.1143/jjap.51.02bh01

Google Scholar

[14] S. Hara, S. Sakita, M. Yatago, Selective-Area Growth and Electrical Characterization of Hybrid Structures between Semiconducting GaAs Nanowires and Ferromagnetic MnAs Nanoclusters, Jpn. J. Appl. Phys. 51 (2012) 11PE01.

DOI: 10.1143/jjap.51.11pe01

Google Scholar