Structure Controlled Nanoparticle Conjugates Synthesized by Gas-Liquid Interfacial Plasmas

Article Preview

Abstract:

A periodic structure of gold nanoparticles (AuNPs) is formed by reducing a solution of gold chloride using novel plasma techniques, where a spatio-periodically generated plasma is transcribed to the AuNP structure formed on the ionic liquid (IL) surface under the strong magnetic field. In addition, it is found that a ring-shaped AuNP structure is formed corresponding to the shape of a ring electrode inserted into the plasma, where the AuNPs are synthesized at the position without plasma irradiation due to the shielding by the ring electrode. On the other hand, the periodic structure of the AuNPs are synthesized on the carbon nanotubes (CNTs) working as a template, where the controlled ion irradiation to the IL including functional groups can realize the distance-controlled synthesis of the AuNPs by dissociation of the IL and the functionalization of the CNTs by the dissociated carboxyl and amino groups. Furthermore, DNA is used as the functional group which connects the AuNPs to the CNTs. The mono-dispersed and high-density AuNPs are synthesized on the CNTs in the same way as the carboxyl and amino groups.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

1996-2001

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. G. Koo, M. S. Lee, J. H. Shim, J. H. Ahn, W. M. Lee: J. Mater. Chem. 15 (2005) 4125.

Google Scholar

[2] J. Hieda, N. Saito, and O. Takai: J. Vac. Sci. Technol. A 26 (2008) 854.

Google Scholar

[3] C. Richmonds and R. M. Sankaran: Appl. Phys. Lett. 93 (2008) 131501.

Google Scholar

[4] S. W. Lee, D. Liang, X. P. A. Gao, and R. M. Sankaran: Adv. Funct. Mater. 21 (2011) 2155.

Google Scholar

[5] T. Torimoto, K. Okazaki, T. Kiyama, K. Hirahara, N. Tanaka, S. Kuwabata: Appl. Phys. Lett. 89 (2006) 243117.

DOI: 10.1063/1.2404975

Google Scholar

[6] S.A. Meiss, M. Rohnke, L. Kienle, S.Z.E. Abedin, F. Endres, and J. Janek: ChemPhysChem 8 (2007) 50.

DOI: 10.1002/cphc.200600582

Google Scholar

[7] Y. B. Xie, C. J. Liu: Plasma Process. Polym. 5 (2008) 239.

Google Scholar

[8] R.D. Rogers and K.R. Seddon: Science 302 (2003) 792.

Google Scholar

[9] K. R. Seddon: Nature Mater. 2 (2003) 363.

Google Scholar

[10] K. Baba, T. Kaneko, R. Hatakeyama: Appl. Phys. Lett. 90 (2007) 201501.

Google Scholar

[11] T. Kaneko, K. Baba, and R. Hatakeyama: J. Appl. Phys. 105 (2009) 103306.

Google Scholar

[12] T. Kaneko, K. Baba, T. Harada, and R. Hatakeyama: Plasma Proc. Polym. 6 (2009) 713.

Google Scholar

[13] K. Baba, T. Kaneko, R. Hatakeyama, K. Motomiya, and K. Tohji: Chem. Commun. 46 (2010) 255.

Google Scholar

[14] T. Kaneko, Q. Chen, T. Harada, and R. Hatakeyama: Plasma Sources Sci. Technol. 20 (2011) 034014.

Google Scholar

[15] T. Kaneko, S. Takahashi, and R. Hatakeyama: Plasma Phys. Control. Fusion 54 (2012) 124027.

Google Scholar

[16] T. Kaneko and R. Hatakeyama: Jpn. J. Appl. Phys. 51 (2012) 11PJ03.

Google Scholar

[17] D. Pantarotto, R. Singh, D. McCarthy, M. Erhardt, J. -P. Briand, M. Prato, K. Kostarelos, and A. Bianco: Angew. Chem. Int. Ed. 43 (2004) 5242.

DOI: 10.1002/anie.200460437

Google Scholar

[18] T. Okada, T. Kaneko, R. Hatakeyama, and K. Tohji: Chem. Phys. Lett. 417 (2006) 288.

Google Scholar