Gas-Liquid In Situ Production of Ceramic Reinforced Aluminum Matrix Nanocomposites

Article Preview

Abstract:

The present study aims at evaluating the gas bubbling method, based on the use of dry air as a gaseous phase, for the production of Al based metal matrix nanocomposites through a proper gas-liquid reaction. In particular, Al2O3 reinforcement particles were in-situ synthesized in molten commercially pure Al through a gas bubbling oxidation technique. Dry air was injected in the melt in order to induce a controlled oxidation of the molten matrix. SEM-EDS analysis on the produced samples revealed the presence of alumina particles, ranging from the nanoto the micrometric size, demonstrating the feasibility of the process. A hardness increase on the produced samples confirmed the strengthening effect of the in-situ produced ceramic particles.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

2011-2015

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.B. Miracle, Metal matrix composites – From science to technological significance, Comp. Sci. Tech. 65 (2005) 2526–2540.

DOI: 10.1016/j.compscitech.2005.05.027

Google Scholar

[2] T. J. A. Doel, P. Bowen, Tensile properties of particulate-reinforced metal matrix composites, Comp. Part A 27A (1996) 655-665.

DOI: 10.1016/1359-835x(96)00040-1

Google Scholar

[3] S.C. Tjong, Novel nanoparticle-reinforced Metal Matrix Composites with enhanced mechanical properties, Adv. Eng. Mater. 9(8) (2007) 639-652.

DOI: 10.1002/adem.200700106

Google Scholar

[4] I. El-Mahallawi, H. Abdelkader, L. Yousef, A. Amer, J. Mayer, A. Schwedt, Influence of Al2O3 nano-dispersions on microstructure features and mechanical properties of cast and T6 heat-treated Al Si hypoeutectic Alloys, Mater. Sci. Eng. A 556 (2012).

DOI: 10.1016/j.msea.2012.06.061

Google Scholar

[5] S.A. Sajjadi, H.R. Ezatpour, H. Beygi, Microstructure and mechanical properties of Al-Al2O3 micro and nano composites fabricated by stir casting, Mater. Sci. Eng. A 528 (2011) 8765-8771.

DOI: 10.1016/j.msea.2011.08.052

Google Scholar

[6] C. Borgonovo, D. Apelian, Processing of Lightweight Metal Matrix Composites via In Situ Gas/Liquid Reaction, Mater. Sci. Forum 678 (2011) 115.

DOI: 10.4028/www.scientific.net/msf.678.115

Google Scholar

[7] J. Hashim, L. Looney, M.S.J. Hashmi, Particle distribution in cast metal matrix composites—Part I. J. Mater. Process. Technol. 123 (2002) 251–257.

DOI: 10.1016/s0924-0136(02)00098-5

Google Scholar

[8] S.C. Tjong SC, Z.Y. Ma, Microstructural and mechanical characteristics of in situ metal matrix composites, Mater. Sci. Eng. A 29 (2000) 49-113.

Google Scholar

[9] Q. Hou, R. Mutharasan, M. Koczak, Feasibility of aluminium nitride formation in aluminum alloys. Mater. Sci. Eng. A 195 (1995) 121-129.

DOI: 10.1016/0921-5093(94)06511-x

Google Scholar

[10] B.S.S. Daniel, V.S.R. Murthy, G.S. Murty, Metal-ceramic composites via in-situ methods. J. Mater. Process. Technol. 68 (1997) 132-155.

DOI: 10.1016/s0924-0136(96)00020-9

Google Scholar

[11] S.S.S. Kumari, U.T.S. Pillai, B.C. Pai, Synthesis and characterization of in situ Al–AlN composite by nitrogen gas, J. Alloy. Compd. 509 (2011) 2503–2509.

DOI: 10.1016/j.jallcom.2010.11.065

Google Scholar

[12] Y. Huashun, J.D. Kim JD, S.B. Kang, The formation of AlN and TiN particles during nitrogen bearing gas injection into Al–Mg–Ti melt. Mater. Sci. Eng. A 386 (2004) 318–325.

DOI: 10.1016/s0921-5093(04)00971-2

Google Scholar

[13] M.J. Koczak, K.S. Kumat, U. S Patent, 4 408 372 (1989).

Google Scholar

[14] Y. Ji, X. Gao, T. Zhong, Formation and Microstructure of an In Situ Aluminum Composite by Oxygen Spray Technique, J. Mater. Eng. Perform 8(2) (1999) 168-170.

DOI: 10.1361/105994999770347007

Google Scholar

[15] Q. Zheng, R.G. Reddy, Kinetics of In-Situ Formation of AlN in Al Alloy Melts by Bubbling Ammonia Gas, Metal. Mater. Trans B 34B (2003) 793.

DOI: 10.1007/s11663-003-0085-y

Google Scholar

[16] B. S. S. Daniel, V. S. R. Murthy, Directed melt oxidation and nitridation of auminium alloys: a comparison, Mater. Des. 76(3) (1995) 155.

Google Scholar

[17] H. Scholz, P. Grell, Nitridation reactions of molten Al-(Mg-Si) alloys, J. Mater. Sci. 26 (1991) 669 677.

DOI: 10.1007/bf00588302

Google Scholar