[1]
D.B. Miracle, Metal matrix composites – From science to technological significance, Comp. Sci. Tech. 65 (2005) 2526–2540.
DOI: 10.1016/j.compscitech.2005.05.027
Google Scholar
[2]
T. J. A. Doel, P. Bowen, Tensile properties of particulate-reinforced metal matrix composites, Comp. Part A 27A (1996) 655-665.
DOI: 10.1016/1359-835x(96)00040-1
Google Scholar
[3]
S.C. Tjong, Novel nanoparticle-reinforced Metal Matrix Composites with enhanced mechanical properties, Adv. Eng. Mater. 9(8) (2007) 639-652.
DOI: 10.1002/adem.200700106
Google Scholar
[4]
I. El-Mahallawi, H. Abdelkader, L. Yousef, A. Amer, J. Mayer, A. Schwedt, Influence of Al2O3 nano-dispersions on microstructure features and mechanical properties of cast and T6 heat-treated Al Si hypoeutectic Alloys, Mater. Sci. Eng. A 556 (2012).
DOI: 10.1016/j.msea.2012.06.061
Google Scholar
[5]
S.A. Sajjadi, H.R. Ezatpour, H. Beygi, Microstructure and mechanical properties of Al-Al2O3 micro and nano composites fabricated by stir casting, Mater. Sci. Eng. A 528 (2011) 8765-8771.
DOI: 10.1016/j.msea.2011.08.052
Google Scholar
[6]
C. Borgonovo, D. Apelian, Processing of Lightweight Metal Matrix Composites via In Situ Gas/Liquid Reaction, Mater. Sci. Forum 678 (2011) 115.
DOI: 10.4028/www.scientific.net/msf.678.115
Google Scholar
[7]
J. Hashim, L. Looney, M.S.J. Hashmi, Particle distribution in cast metal matrix composites—Part I. J. Mater. Process. Technol. 123 (2002) 251–257.
DOI: 10.1016/s0924-0136(02)00098-5
Google Scholar
[8]
S.C. Tjong SC, Z.Y. Ma, Microstructural and mechanical characteristics of in situ metal matrix composites, Mater. Sci. Eng. A 29 (2000) 49-113.
Google Scholar
[9]
Q. Hou, R. Mutharasan, M. Koczak, Feasibility of aluminium nitride formation in aluminum alloys. Mater. Sci. Eng. A 195 (1995) 121-129.
DOI: 10.1016/0921-5093(94)06511-x
Google Scholar
[10]
B.S.S. Daniel, V.S.R. Murthy, G.S. Murty, Metal-ceramic composites via in-situ methods. J. Mater. Process. Technol. 68 (1997) 132-155.
DOI: 10.1016/s0924-0136(96)00020-9
Google Scholar
[11]
S.S.S. Kumari, U.T.S. Pillai, B.C. Pai, Synthesis and characterization of in situ Al–AlN composite by nitrogen gas, J. Alloy. Compd. 509 (2011) 2503–2509.
DOI: 10.1016/j.jallcom.2010.11.065
Google Scholar
[12]
Y. Huashun, J.D. Kim JD, S.B. Kang, The formation of AlN and TiN particles during nitrogen bearing gas injection into Al–Mg–Ti melt. Mater. Sci. Eng. A 386 (2004) 318–325.
DOI: 10.1016/s0921-5093(04)00971-2
Google Scholar
[13]
M.J. Koczak, K.S. Kumat, U. S Patent, 4 408 372 (1989).
Google Scholar
[14]
Y. Ji, X. Gao, T. Zhong, Formation and Microstructure of an In Situ Aluminum Composite by Oxygen Spray Technique, J. Mater. Eng. Perform 8(2) (1999) 168-170.
DOI: 10.1361/105994999770347007
Google Scholar
[15]
Q. Zheng, R.G. Reddy, Kinetics of In-Situ Formation of AlN in Al Alloy Melts by Bubbling Ammonia Gas, Metal. Mater. Trans B 34B (2003) 793.
DOI: 10.1007/s11663-003-0085-y
Google Scholar
[16]
B. S. S. Daniel, V. S. R. Murthy, Directed melt oxidation and nitridation of auminium alloys: a comparison, Mater. Des. 76(3) (1995) 155.
Google Scholar
[17]
H. Scholz, P. Grell, Nitridation reactions of molten Al-(Mg-Si) alloys, J. Mater. Sci. 26 (1991) 669 677.
DOI: 10.1007/bf00588302
Google Scholar