Plasma Synthesis of Silicon Nanocrystals: Application to Organic/Inorganic Photovoltaics through Solution Processing

Article Preview

Abstract:

Silicon nanocrystals (SiNCs) have unique optical and electronic properties that are advantageous for semiconductor device applications and here their application to solar cell is presented. Free-standing, narrow size distribution SiNCs were synthesized by non-thermal plasma using silicon tetrachloride (SiCl4) successfully. Blended solution of as-produced SiNCs and P3HT, or Poly(3-hexylthiophene-2,5-diyl), was spin-casted to form bulk heterojunction solar cell devices. As the weight fraction of SiNCs increased up to 50 wt%, the short circuit current and the power conversion efficiency dramatically increased, while the open circuit voltage and the fill factor do not change significantly. The improved performance is attributable to increased probability of exciton dissociation at acceptor SiNCs and donor P3HT interface.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

2002-2004

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Xu and Q. Qiao: Energy Environ. Sci. 4 (2011) 2700.

Google Scholar

[2] Q. Qiao, Y. Xie, and J. J. T. McLeskey: J. Phys. Chem. C 112 (2008) 9912.

Google Scholar

[3] M. V. Kovalenko, M. Scheele, and D. V. Talapin: Science 324 (2009) 1417.

Google Scholar

[4] H. Borchert: Energy Environ. Sci. 3 (2010) 1682.

Google Scholar

[5] S. Q. Ren, N. Zhao, S. C. Crawford, M. Tambe, V. Bulovic, and S. Gradecak: Nano Lett. 11 (2011) 408.

Google Scholar

[6] P. Wang, A. Abrusci, H. M. P. Wong, M. Svensson, M. R. Andersson, and N. C. Greenham: Nano Lett. 6 (2006) 1789.

Google Scholar

[7] M. Shim and P. Guyot-Sionnest: J. Am. Chem. Soc. 123 (2001) 11651.

Google Scholar

[8] J. Boucle, P. Ravirajan, J. Nelson: J. Mater. Chem. 17 (2007) 3141.

Google Scholar

[9] N. Zhao, T. P. Osedach, L. Y. Chang, S. M. Geyer, D. Wanger, M. T. Binda, A. C. Arango, M. G. Bawendi, V. Bulovic: ACS Nano 4 (2010) 3743.

DOI: 10.1021/nn100129j

Google Scholar

[10] S. Niesar, W. Fabian, N. Petermann, D. Herrmann, E. Riedle, H. Wiggers, M. S. Brandt, and M. Stutzmann: Green 1 (2011) 339.

DOI: 10.1515/green.2011.034

Google Scholar

[11] C. Tu, L. Tang, J. Huang, A. Voutsas, and L. Y. Lin: Optics express 18 (2010) 21622.

Google Scholar

[12] R. Gresback, T. Nozaki, and K. Okazaki: Nanotechnology 22 (2011) 305605.

Google Scholar

[13] L. Mangolini, E. Thimsen, and U. Kortshagen: Nano Lett. 5 (2005) 655.

Google Scholar

[14] C. Y. Liu, Z. C. Holman, and U. R. Kortshagen: Nano Lett. 9 (2009) 449.

Google Scholar

[15] M. Wright and A. Uddin: Solar Energy Materials & Solar Cell 107 (2012) 87.

Google Scholar

[16] R. Gresback, Y. Murakami, Y. Ding, R. Yamada, K. Okazaki, and T. Nozaki: Langmuir 29 (2013) 1802.

Google Scholar