Materials Science Forum Vols. 783-786

Paper Title Page

Abstract: Gamma titanium aluminides are innovative materials for high temperature and light weight applications [1]. On the other hand, their hot workability can be limited by failure during hot deformation processes. The prediction of ductile damage in metallic materials can be performed by macromechanical ductile damage criteria [2-4]. If the calculated damage D parameter exceeds a critical value Dc, the material fails. Some macromechanical ductile damage criteria are shown in Table 1, with σ as effective stress, ε as effective strain, σmax as maximum principal stress, σm as hydrostatic stress (mean stress) and εf as equivalent fracture strain. The damage responds to strain localization and thus, to multiaxial stress concentration that increases fracture probability.
556
Abstract: Titanium is considered to be a ubiquitous element since it has the 9th-highest Clarke number of all elements. Iron and manganese can also be used as beta stabilizers for Ti alloys, and can be considered to be ubiquitous because of their 4th- and 11th-highest Clarke numbers, respectively. However, investigations into the behavior of Ti-Mn-Fe alloys during heat treatment have shown that in some alloys, the isothermal omega phase is precipitated. Because this phase can lead to brittleness, it is very important to prevent it from forming. It is well known that aluminum can suppress the precipitation of the isothermal omega phase. Thus, in the present study, we investigated the effect of Al content on the phase constitution and heat-treatment behavior of Ti-8.5mass%Mn-1mass%Fe-0 to 4.5mass%Al alloys using electrical resistivity, Vickers hardness, and X-ray diffraction measurements. In all solution-treated and quenched alloys, only the beta phase was identified, thus confirming the suppression of omega-phase precipitation. The resistivity was found to increase monotonically with Al content, while the Vickers hardness decreased up to 3 mass% Al and then remained constant.
562
Abstract: The plasticity of hexagonal materials is strongly anisotropic and involves different microscopic mechanisms such as mechanical twinning and dislocation glide. Twins are often considered to be responsible for a particular three-stage shape of compression curves, unusual for polycrystals with cubic structure. However, the role of twins remains a matter of debate and it is not clear if the same features appear in other testing conditions. We performed tensile tests on commercially-pure Ti samples cut along the rolling and the transverse direction, which yielded several unexpected results. In particular, the work hardening rate was found to be lower in the latter case, although the EBSD measurements revealed for them a larger volume fraction of twins. Also, the two kinds of specimens showed an opposite sign for the strain-rate effect on the proneness to the three-stage shape of the deformation curves. As a first approach, these observations are compared to the results derived from a simple Kocks-Mecking model. The possible role of twinning and dislocation glide on the anisotropy of mechanical behavior of titanium is then discussed.
568
Abstract: Titanium (Ti) and its alloys are used extensively in aerospace industry where there is a critical need for material with high strength-to–weight ratio and high elevate temperature properties. Friction stir welding (FSW) is a new solid state welding process in which a cylindrical–shouldered tool with an extended pin is rotated and gradually plunged into the joint between the workpieces to be welded. The material is frictionally heated to a temperature at which it becomes more plastic but no melting of the blanks to be welded is reached therefore the presence of defects typically observed in and close to the welding seam is strongly reduced. The final result is the improvement of the mechanical performances of the welded joints even in some materials with poor fusion weldability. In this paper the authors analyze the microstructure of FSW joints of Ti-6Al-4V processed at the same travel speed (50 mm/min) and at different rotation speed (300-500rpm). The microstructure of base material (BM) is not homogenous. It is characterized by distorted α/ β lamellar microstructure together with smashed zone of fragmented β layer and β retained grain boundary phase. The BM has been welded in the as received state, without any previous heat treatment. The microstructure of the transverse section of joints is not homogeneous. Close to the top of weld cross sections a much finer microstructure than the initial condition has been observed while in the center of the joints the microstructure is mixed and less refined.
574
Abstract: Titanium (Ti) alloys are widely used in aerospace industries successfully up to 600°C. Increasing the operating temperature and performance of these alloys would be very useful for fuel economy. Numerous numbers of research works has been focused on the improvement of the high temperature performances of Ti alloys. It has been well known that Zirconium (Zr) is one of the important solid-solution strengthener in Ti-alloys. In the present study, the effect of Zr addition on the microstructure and mechanical properties of the near–α Ti-Al-Zr-Sn based alloys has been investigated.The compression test results showed that Zr addition significantly improves both room temperature and high temperature strength. The results obtained were explained based on the microstructural observation, room temperature and high temperature compressive tests.
580
Abstract: Ti6Al4V samples were isothermally compressed using a Gleeble(TM) 1500D thermo-mechanical simulator. Differential scanning calorimetry (DSC), microstructural analyses, and thermodynamic calculations were used to investigate the sequence of transformation of β into α or vice-versa and the presence of different phases in the compressed Ti6Al4V sample. Globular alpha phase was revealed in the isothermally compressed sample in addition to martensitic and lamellar α/β structures. The transition temperature range of β into α-phase was determined using the DSC thermograms and thermodynamic calculated diagrams. The fraction of α-phase globulized increased as the strain rate decreased from 0.01s-1 to 10-3s-1, and the spheroidization of the α-phase is only possible in a specific range of deformation temperatures.
584
Abstract: While the wide range of applications of TiNi alloys make them highly appealing due to their shape memory and superelasticity properties, production of TiNi in the porous form further enlarges their application fields. Porous TiNi alloys have been studied extensively for biomedical applications due to their elastic modulus similar to that of bone. Accordingly, TiNi foams have been widely characterized in terms of their various mechanical properties; however, their fatigue properties have not been well studied, even though, it has a vital importance in structural applications such as medical implants. In the scope of this study, fatigue behavior of TiNi foams, which were produced from prealloyed powders by Mg space holder technique, was examined via load controlled cyclic compression-compression tests. The endurance limit of the tested foams was taken as the stress level at which the specimens sustain their integrity without showing any sign of failure beyond 106 cycles. TiNi foams with porosity contents in the range of 39-64 vol%, which is suitable for bone ingrowth, were determined to have an endurance limit ranging in between 26-89 MPa. On the other hand, fractography studies on the failed foams after fatigue testing revealed that the failure occurs by the coalescence of micro-cracks initiated from pore walls leading to macro-crack formation aligned at 45o with respect to the loading axis.
591
Abstract: To develop a low-cost β Ti alloy, the influence of Mn in Ti-Al-Fe alloys on solution treatment behavior and mechanical properties was investigated. Although it has been known that Mn is a β stabilizing element in Ti alloys, Mn has not often been used for Ti alloys in spite of its low cost and sustainability so far, since Mn easily evaporates under low-pressure atmosphere, which is a common condition when melting Ti alloys. Therefore, general β Ti alloys include a high amount of expensive elements such as V, Mo and Nb to stabilize the β matrix phase. In this paper, Ti-8 to 10Mn-1Fe-3Al alloys (mass%) were produced by cold crucible levitation melting under atmospheric pressure to inhibit Mn loss by vaporization. As results, it was found that the β transus was lowered with increasing Mn amount, but the full β phase was obtained in solution-treated alloys over 1113 K, even in the 8%Mn alloy. Through tensile and Charpy impact tests of the full beta-phase samples, the ductility and toughness increase monotonically with increasing Mn amount from 8 to 10% in spite of the tensile strength having almost constant value. Ti-10Mn-1Fe-3Al alloy has the best mechanical properties among the alloys used in this study.
597
Abstract: Near α titanium alloys have found wide application as compressor blades, fins in aero engines [1]. In order to achieve better fuel economy, there is a major focus to increase the operating temperature of these components. Addition of small amount of silicon has been found to significantly improve creep resistance [2-7]. Highly stable grain boundary precipitates could reduce the grain boundary sliding and uniform precipitation could restrict the dislocation creep at high temperature. Applications of Si added titanium alloys are limited up to 600oC. Ge being analogous to Si shows better solid solubility, particularly at room temperature [8]. Consequently, it can lead to solid solution strengthening. It has also been reported that germanides have better thermal stability compared to silicides [8]. However, there is no investigation available on the effect of Ge on the microstructural evolution in near α titanium alloys. Therefore, the present study aims at understanding the effect of Si and Ge addition on the evolution of microstructure in near α titanium alloys.
602
Abstract: A superplastic-like forming (SPLF) process involving the use of hot drawing along with blow forming is studied here. The hot drawing stage helps in enhancing the formability and in fast forming the metal sheet into a hollow shape with desired amount of material draw-in. During the blow forming stage, gas pressure was applied onto the pre-formed part to complete the forming process at a targeted strain rate. Ti-6Al-4V sheets have been successfully formed by this process at 800 °C in 16 min. In this paper, finite element modeling (FEM) was used to demonstrate the effects of each stage (hot drawing and blow forming) during SPLF. A plasticity model based on tensile test data was adopted as a material model for simulation. The pressure cycle which was predicted from the simulation has been used in the process to maintain the sheet forming at an average strain rate (e.g. 10-3, 5×10-4 and 10-4 s-1. Experimental measurements, i.e. material draw-in and thickness distribution, were used to compare and validate the results from simulations. The validated simulations have shown the capability of the model to be used for the forming process. The influences of varying process parameters, such as drawing stroke, blank-holder force, friction coefficient and pressure cycle, were investigated by the simulations. It was found that the punch geometry and drawing stroke played significant roles on the thickness uniformity of the final part, from which an optimized hot-drawing system that could result in minimum thinning has been designed by FEM.
607

Showing 91 to 100 of 470 Paper Titles