Low Pressure Homoepitaxial Growth of 4H-SiC on 4°off-Axis Substrates

Article Preview

Abstract:

Step-bunching and triangular defects are significant problems in achieving higher growth rate 4H-SiC epilayers in a horizontal hot wall CVD reactor using a standard non-chlorinated chemistry of silane-propane-hydrogen on 4°off-axis substrates. In this work, the impact of growth pressure on generation of step-bunching and triangular defects and the correlations between the surface roughness and the formation of defects were investigated. It has been found that the impact of growth pressure on concentration of the triangle defects and surface roughness is obviously different. An overall reduction of defects was observed with decreasing growth pressure while the surface roughness increased. The increased adatom surface mobility in low pressure range and minimization of surface free energy are the main reasons for the phenomenon above. High Resolution X-Ray Diffraction (HRXRD) indicated that the structural quality of 4H-SiC epilayers performed at low pressure was higher than that obtained at high pressure.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 821-823)

Pages:

181-184

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Elasser A, Pchow T 2002 Prec. IEEE 90 969.

Google Scholar

[2] Waldrop J R, Grant R W, Wang Y C, Davies R F. 1992 J . Appl . Phys. 72 4757.

Google Scholar

[3] J.A. Cooper, A. Agarwal, Proceedings of the IEEE 90 (2002) 956.

Google Scholar

[4] R. Rupp, Yu.N. Makarov, H. Behner, A. Wiedenhofer, Physica Status Solidi B202 (1997)281.

Google Scholar

[5] H. Tsuchida, I. Kamata, T. Jikimoto, K. Izumi, Journal of Crystal Growth, 237–239 (2002)1206.

DOI: 10.1016/s0022-0248(01)02173-x

Google Scholar

[6] Y. Ishida, T. Takahashi, H. Okumura, K. Arai, S. Yoshida. Materials Science Forum 600–603 (2009)119.

Google Scholar

[7] M. Ito,L. Storasta,H. Tsuchida, AppliedPhysicsExpress1(2008)015001.

Google Scholar

[8] G. Aylward, T. Findlay, SI Chemical Data, 4th ed.; John Wiley & Sons: Australia, (1998); p.115.

Google Scholar

[9] S. Leone, H. Pedersen, Journal of Crystal Growth 311 (2009) 3265–3272.

Google Scholar

[10] A. Henry, J. Hassan, J.P. Bergman, C. Hallin, E. Janzén, Chemical Vapor Deposition 12(2006)475.

Google Scholar

[11] M. Yazdanfar, P. Stenberg, I.D. Booker, I.G. Ivanov, O. Kordina, H. Pedersen, E. Janzén, Journal of Crystal Growth 380(2013)55–60.

DOI: 10.1016/j.jcrysgro.2013.05.037

Google Scholar

[12] S. Leone, F. C. Beyer, H. Pedersen, Materials Research Bulletin 46 (2011) 1272-1275.

Google Scholar

[13] T. Aigo, W. Ito, H. Tsuge, H. Yashiro, M. Katsuno, T. Fujimoto, W. Ohashi, Materials Science Forum 717–720 (2012) 101–104.

DOI: 10.4028/www.scientific.net/msf.717-720.101

Google Scholar

[14] T. Kato, A. Kinoshita, K. Wada, T. Nishi, E. Hozomi, H. Taniguchi, K. Fukuda, H. Okumura, Materials Science Forum 645–648 (2010) 763–765.

DOI: 10.4028/www.scientific.net/msf.645-648.763

Google Scholar

[15] A. Shrivastava, P. Muzykov, B. Pearman, S.M. Angel, T.S. Sudarshan, Materials Science Forum 600–603 (2009) 139–142.

DOI: 10.4028/www.scientific.net/msf.600-603.139

Google Scholar

[16] V. Heine, C. Cheng, R.J. Needs, J. Am. Ceram. Soc. 74 (1991) 2630.

Google Scholar

[17] F. R. Chien, S.R. Nutt, W.S. Yoo, T. Kimoto, H. Matsunami. J. Mater. Res. 9 (1994) 940.

Google Scholar

[18] J. Hassan, A. Henry, P.J. McNally, J.P. Bergman, J. Cryst. Growth 312 (2010) 1828–1837.

Google Scholar