Silicon Carbide Nanowire Devices for Label-Free Electrical DNA Detection

Article Preview

Abstract:

Silicon Carbide is a promising material to overtake the limitations of Si sensors used for in vivo detection. Here, two different nanodevices are presented. The first one is a SiC NWFET used for electrical detection of DNA molecules. The addition of DNA probe molecules increases the current by 25% and the hybridization with DNA targets increases by 80%. This confirms the efficiency of our sensor to detect DNA. The second one is a Metal Insulator Semicondutor capacitor composed of DNA functionalized SiC nanopillar arrays embedded in a sol-gel silicon dioxide matrix. Capacitance measurements show a singular response between 80 and 100 Hz which is attributed to the presence of DNA molecules.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 821-823)

Pages:

855-858

Citation:

Online since:

June 2015

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Cui, Q. Wei, H. Park, C. M. Lieber, Science 293, (2001) 1289–1292.

Google Scholar

[2] S. Wodin-Schwartz, J. C. Cheng, D. G. Senesky, J. E. Hammer, A. P. Pisano, in 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), (2012), p.432–435.

DOI: 10.1109/memsys.2012.6170219

Google Scholar

[3] K. Rogdakis, E. Bano, L. Montes, M. Bechelany, D. Cornu, K. Zekentes, Mater. Sci. Forum 679-680, (2011) 613–616.

DOI: 10.4028/www.scientific.net/msf.679-680.613

Google Scholar

[4] M. Ollivier, L. Latu-Romain, B. Salem, L. Fradetal, V. Brouzet, J. -H. Choi, E. Bano, Mater. Sci. Semicond. Process. , in press, doi: 10. 1016/j. mssp. 2014. 03. 020.

Google Scholar

[5] L. Fradetal, V. Stambouli, E. Bano, B. Pelissier, K. Wierzbowska, J. H. Choi, L. Latu-Romain, Mater. Sci. Forum 740-742, (2013) 821–824.

DOI: 10.4028/www.scientific.net/msf.740-742.821

Google Scholar

[6] L. Fradetal, V. Stambouli, E. Bano, B. Pelissier, J. H. Choi, M. Ollivier, L. Latu-Romain, T. Boudou, I. Pignot-Paintrand, J. Nanosci. Nanotechnol. 14, (2014) 3391–3397.

DOI: 10.1166/jnn.2014.8223

Google Scholar

[7] G. Attolini, F. Rossi, M. Bosi, B. E. Watts, G. Salviati, J. Nanosci. Nanotechnol. 11, (2011) 4109–4113.

DOI: 10.1166/jnn.2011.3864

Google Scholar

[8] J. H. Choi, L. Latu-Romain, E. Bano, F. Dhalluin, T. Chevolleau, T. Baron, J. Phys. Appl. Phys. 45, (2012) 235204.

DOI: 10.1088/0022-3727/45/23/235204

Google Scholar