Assessment of SiC Crystal Chemistry during the PVT Growth Process: Coupled Numerical Modeling and Thermodynamics Approach

Article Preview

Abstract:

Numerical simulation appeared till now as the only tool able to describe the SiC growth by PVT process, while the chemistry of the Si-C system and its coupling to mass transfer were not considered in a satisfactory way. To assess the chemistry of SiC crystal, the coupling of numerical and thermodynamic calculations computed by FEM, and by treating SiC as a solid solution, respectively, is presented. This enables the possibilities to control the activity of each component in SiC crystal during the growth. The link between growth conditions and SiC crystal chemistry could be one of the key issues to link the growth and the occurrence of cubic or hexagonal polytypes.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 821-823)

Pages:

96-99

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Pons, E. Blanquet, J.M. Dedulle, I. Garcon, R. Madar, C. Bernard, J. Electrochem. Soc. 143 (1996) 3727.

DOI: 10.1149/1.1837280

Google Scholar

[2] B. Gao, X.J. Chen, S. Nakano, S. Nishizawa, K. Kakimoto, J. Cryst. Growth 312 (2010) 3349.

Google Scholar

[3] G. Honstein, C. Chatillon, F. Baillet, J. Eur. Ceram. Soc. 32 (2012) 1117.

Google Scholar

[4] T. Fujimoto, N. Ohtani, H. Tsuge, M. Katsuno, S. Sato, M. Nakabayashi, T. Yano, J. Electrochem. Soc. 2(8) (2013) N3018.

Google Scholar

[5] J. Drowart, G. De Maria, M.G. Inghram, J. Chem. Phys. 29 (1958) 1015.

Google Scholar

[6] D. P. Birnie III, W. D. Kingery, J. Mater. Sci. 25 (1990) 2827.

Google Scholar

[7] M. W. Chase, NIST-JANAF thermochemical tables. ACS, Washinton, D.C. and Woodbury, N.Y., (1998).

Google Scholar

[8] M. Selder, L. Kadinski, Yu. Makarov, F. Durst, P. Wellmann, T. Straubinger, D. Hofmann, S, Karpov, M. Ramm, J. Cryst. Growth 211 (2000) 333.

DOI: 10.1016/s0022-0248(99)00853-2

Google Scholar

[9] K. Semmelroth, M. Krieger, G. Pensl, H. Nagasawa, R. Pusche, M. Hundhausen, L. Ley, M. Nerding, H. P. Strunk. J. Cryst. Growth 308 (2007) 241.

DOI: 10.1016/j.jcrysgro.2007.07.060

Google Scholar

[10] U. Starke, J. Schardt, J. Bernhardt, M. Franke, K. Heinz, Phys. Rev. Lett. 82 (1999) 2107.

Google Scholar

[11] K. Furukawa, Y. Tajima, H. Saito, Y. Fuji, A. Suzuki, S. Kakajima, Jpn. J. Appl. Phys. 32 (1993) L645.

Google Scholar

[12] K. Kakimoto, B. Gao, T. Shiramomo, S. Nakano, S. Nishizawa, J. Cryst. Growth 334 (2011) 78.

Google Scholar

[13] D. J. Larkin, P. G. Neudeck, J. A. Powell, L. G. Matus, Appl. Phys. Lett, 65 (1994) 1659.

Google Scholar