Controlling Planar Defects in 3C-SiC: Ways to Wake it up as a Practical Semiconductor

Article Preview

Abstract:

Eelectrically active defects in 3C–SiC are investigated by considering the structures and interactions of planar defects. An anti-phase boundary (APB) largely degrades the blocking property of semiconductor devices due to its semimetallic nature. Although APBs can be eliminated by orienting the specific polar face of 3C-SiC along a particular direction, stacking faults (SFs) cannot be eliminated due to Shockley-type partial dislocation glide. SFs with Shockley-type partial dislocations form a trapezoidal plate which expands the Si-terminated surface with increasing 3C-SiC thickness. Although the density of SFs can be reduced by counter termination, specific cross-junctions between a pair of counter SFs forms a forest dislocation, and this is regarded as an electrically active defect. This paper proposes an effective way to suppress the forest dislocations and APBs which nucleate during 3C-SiC growth.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 821-823)

Pages:

108-114

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Yamashiro, M. Sugawara, H. Nagasawa, Y. Yamaguchi, Jpn. J. Appl. Phys. 30 (1991) 3078.

Google Scholar

[2] H. Fukidome, Y, Kawai, F. Fromm, M. Kotsugi, H. Handa, T. Ide, T. Ohkouchi, H. Miyashita, Y. Enta, T. Kinoshita, Th. Seyller, M. Suemitsu, Appl. Phys. Lett. 101, 04 (2012) 1605.

DOI: 10.1063/1.4740271

Google Scholar

[3] G. Pensl, M. Bassler, F. Ciobanu, V.V. Afanas'ev, H. Yano, T. Kimoto, H. Matsunami, Mater. Res. Soc. Symp. Proc. 640 (2001), p. H(3), 2.

Google Scholar

[4] H. Uchida, A. Minami, T. Sakata, H. Nagasawa, Mater. Sci. Forum 717-720 (2012) 1109.

Google Scholar

[5] W. Lambrecht, B. Segall, Phys. Rev. B41 (1990) 2948.

Google Scholar

[6] N. Hatta, K. Yagi, T. Kawahara, H. Nagasawa, M. Abe, Abstract (FrP3-75), 5th European Conference on Silicon Carbide and Related Materials (ECSCRM 2004).

Google Scholar

[7] H. Nagasawa, K. Yagi, T. Kawahara, N. Hatta, G. Pensl, W. J. Choyke, T. Yamada, K.M. Itoh, A. Schöner, in: Silicon Carbide, Recent Major Results, edited by W.J. Choyke, H. Matsunami, G. Pensl (Springer, Berlin, 2004), 207–228.

DOI: 10.1007/978-3-642-18870-1_9

Google Scholar

[8] H. Nagasawa, T. Kawahara, K. Yagi, N. Hatta, Y. Ikebe, Extended Abstracts of fall meeting in 2012, The Japan Society of Applied Physics, 12aH7_1.

Google Scholar

[9] E. Pearson, T. Takai, T. Halicioglu, W.A. Tiller, J. Crystal Growth 70 (1984) 33.

Google Scholar

[10] Y. Sun, S. Izumi, S. Sakai, K. Yagi, Computational Materials Science 79 (2013) 216.

Google Scholar

[11] K. Shibahara, T. Saito, S. Nishino, H. Matsunami, Extended Abstract of the 18th International Conference on Solid State Devices and Materials, Tokyo, (1986) 717.

Google Scholar

[12] S. Beljakowa, M. Hauck, M. Bockstedte, F. Fromm, M. Hundhausen, H. Nagasawa, H.B. Weber, G. Pensl, M. Krieger, Mater. Sci. Forum 778-780 (2014) 265.

DOI: 10.4028/www.scientific.net/msf.778-780.265

Google Scholar

[13] B. Zippelius, M. Krieger, H.B. Weber, G. Pensl, H. Nagasawa, T. Kawahara, N. Hatta, K. Yagi, H. Uchida, M. Kobayashi, Mater. Sci. Forum 679-680 (2011) 571-574.

DOI: 10.4028/www.scientific.net/msf.679-680.571

Google Scholar

[14] E.K.K. Abavare, J. Iwata,A. Yaya, A. Oshiyama, phys. status. solidi B 251 (2014) 1408-1415.

DOI: 10.1002/pssb.201350335

Google Scholar