Abnormal Raman Spectral Variation with Excitation Wavelength in Boron-Doped Single-Crystalline Diamond

Article Preview

Abstract:

The Raman spectra of boron-doped single-crystalline diamond were measured at excitation wavelengths between 364.0 and 1064.0 nm and found that the first-order Raman band at 1332 cm-1 shifts to the low-frequency side, broadens, and develops a derivative-like lineshape as the boron concentration increases. The derivative-like lineshape can be explained by Fano interference. Furthermore, I found that the asymmetric lineshape changes between excitation wavelengths of 514.5 and 785.0 nm. From a comparison of the normalized relative Raman intensity as a function of the excitation energy and the density of states (DOS) in the valence band in the B-doped diamond calculated previously by the coherent potential approximation, the abnormal change in the Raman lineshape is attributed to a change in the DOS in the valence band at approximately 2.0 eV. Raman spectroscopy provides us with extensive information on carrier concentrations, and electronic band structures of B-doped diamond.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1158-1161

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Cerdeira, T. A. Fjeldly, and M. Cardona, Solid State Commun. 13 (1973) 325.

Google Scholar

[2] F. Cerdeira, T. A. Fjeldly, and M. Cardona, Phys. Rev. B. 8 (1973) 4734.

Google Scholar

[3] G. Abstreiter, M. Cardona, and A. Pinczuk, in Light Scattering in Solids IV, in: M. Cardona and G. Guntherodt (Eds. ), Springer-Verlag, Berlin, 1984, p.5.

Google Scholar

[4] M. Yoshikawa, H. Ishida, A. Ishitani, T. Murakami, S. Koizumi, and T. Inuzuka, Appl. Phys. Lett. 57 (1990) 428.

Google Scholar

[5] M. Yoshikawa, H. Ishida, A. Ishitani, S. Koizumi, and T. Inuzuka, Appl. Phys. Lett. 58 (1991) 1387.

Google Scholar

[6] M. Yoshikawa, G. Katagiri, H. Ishida, M. Ono, K. Matsumura, and A. Ishitani, Appl. Phys. Lett. 55 (1989) 2608.

Google Scholar

[7] M. Yoshikawa, Y. Mori, H. Obata, M. Maegawa, G. Katagiri, H. Ishida, and A. Ishitani, , Appl. Phys. Lett. 67 (1995) 694.

DOI: 10.1063/1.115206

Google Scholar

[8] S. A. Solin and A. K. Ramdas, Raman Spectrum of Diamond,. Phys. Rev. B. 1 (1970) 1687.

Google Scholar

[9] U. Fano, Phys. Rev. 124 (1961) 1866.

Google Scholar

[10] E. Gheeraert, P. Gonon, A. Deneuville, L. Abello, and G. Lucazeau, Diamond Relat. Mater. 2 (1993) 742.

DOI: 10.1016/0925-9635(93)90215-n

Google Scholar

[11] R. Locher, J. Wagner, F. Fuchs, C. Wild, P. Hiesinger, P. Gonon, and P. Koidl, Mater. Sci. Eng. B29 (1995) 211.

Google Scholar

[12] J. W. Ager III, W. Walukiewicz, and M. McCluskey, Appl. Phys. Lett. 66 (1995) 616.

Google Scholar

[13] M. Yoshikawa, N. Nagai, M. Matsuki, H. Fukuda. G. Katagiri, H. Ishida, A. Ishitani, and I. Nagai, Phys. Rev. B. 46 (1992) 7169.

Google Scholar

[14] M. Yoshikawa, K. Iwagami, T. Matsunobe, N. Morita, Y. Yamaguchi, Y. Izumi, and J. Wagner, Phys. Rev. B. 69 (2004) 045410R.

Google Scholar

[15] B. G. Burke, J. Chean, K. A. Williams, Z. Wu, A. A. Puretzky, and D. B. Geohegan, J. Raman Spectrosc. 41 (2010) 1759.

Google Scholar

[16] Y. Ohta, New Diamond Front. Carbon Technol. 17 (2007) 33.

Google Scholar