Accuracy of the Energy Distribution of the Interface States at the SiO2/SiC Interface by Conductance Method

Article Preview

Abstract:

The electrical characteristics of the SiC metal-oxide-semiconductor field effect transistor (MOSFET) have been limited by large amount of states at the SiO2/SiC interface. In this study, the accuracy of the energy level of the interface states extracted by hypothetical high frequency extreme, which is conventionally used, is experimentally examined. Conductance measurements at low temperature between 65 K and 100 K reveal that the extracted energy distribution of the interface states at nitrided SiO2/SiC interface close to the conduction band edge depends on the measurement temperature. It is demonstrated that conductance method at 65K enables us more accurate evaluation of the interface states at the SiO2/SiC interface and found that the interface states density (Dit) of nitride SiO2/SiC interface is over 1013 cm-2eV-1 at energy level of 0.1 eV below the conduction band edge.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

437-440

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Yoshioka, T. Nakamura and T. Kimoto, J. Appl. Phys. 112, 024520 (2012).

Google Scholar

[2] N. Yoshida, E. Waki, M. Arai, K. Yamasaki, J. -H. Han, M. Takenaka and S. Takagi, Thin Solid Films 557 (2014) 237-240.

DOI: 10.1016/j.tsf.2013.10.062

Google Scholar

[3] H. Yoshioka, J. Senzaki, A. Shimozato, Y. Tanaka and H. Okumura, AIP Advances 5 (2015) 017109.

Google Scholar

[4] J. Hasegawa, M. Noguchi, M. Furuhashi, S. Nakata, T. Iwasaki, T. Kodera and M. Hatano, J. J. Appl. Phys. 54 (2015) 04DP05.

DOI: 10.7567/jjap.54.04dp05

Google Scholar

[5] H. Yoshioka, T. Nakamura and T. Kimoto, J. Appl. Phys. 115 (2014) 014502.

Google Scholar

[6] R. H. Kikuchi and K. Kita, Appl. Phys. Lett. 105 (2014) 032106.

Google Scholar

[7] H. Matsubara, T. Sasada, M. Takenaka and S. Takagi, J. Appl. Phys. 93 (2008) 032104.

Google Scholar

[8] K. Martens, C. O. Chui, G. Brammertz, B. D. Jaeger, D. Kuzum, M. Meuris, M. M. Heyns, T. Krishnamohan, K. Saraswat, H. E. Maes and G. Groeseneken, IEEE Trans. Electron Dev. 55 (2008) 547-556.

DOI: 10.1109/ted.2007.912365

Google Scholar

[9] M. E. Levinshtein, S. L. Rumyantsev and M. S. Shur, Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe, John Wiley & Sons, (2001).

Google Scholar

[10] D. K. Schroder, Semiconductor material and device characterization, John Wiley & Sons, (2006).

Google Scholar