Interface Analysis of P-Type 4H-SiC/Al2O3 Using Synchrotron-Based XPS

Article Preview

Abstract:

In this paper, the interface between Al2O3 and p-type 4H-SiC is evaluated using x-ray photoelectron spectroscopy (XPS) measurements. These studies are made on dielectric-semiconductor test structures with Al2O3 as dielectric with different pre-and post-deposition treatments. XPS measurements on the as-deposited samples with two different pre-surface cleaning have shown no formation of a SiO2 interlayer. However, after the post deposition rapid thermal annealing (RTA) at 1100 °C in N2O for 60s, a SiO2 interlayer is formed. The surface band bending was determined from Si 2p core level peak shifts measured using XPS. These results suggest that Al2O3 deposited on the p-type 4H-SiC have a net positive oxide charge which is complementary to that of n-type 4H-SiC. From these shifts it was found that the as-deposited RCA cleaned sample had an oxide charge of 5.6×1013 q/cm-2, as compared to standard cleaned samples, having 4.6×1013 q/cm-2. A further reduction in oxide charge was observed after annealing at 1100 °C in N2O, down to a value of 4×1013 q/cm-2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

693-696

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. K. Agarwal, S. Seshadri, B. R. Larry, IEEE Electron. Lett. 18 (1997) 592 -594.

Google Scholar

[2] S. S. Suvanam, M. Usman, K. Gulbinas, V. Grivickas, A. Hallén, Mater. Sci. Forum. 740 (2013) 465-468.

DOI: 10.4028/www.scientific.net/msf.740-742.465

Google Scholar

[3] G. D. Wilk, R. M. Wallace, J. M. Anthony, J. Appl. Phys. 89 (2001) 5243-5275.

Google Scholar

[4] F. Zhang, et. al, J. Appl. Phys. 113 (2013) 044112-1-4.

Google Scholar

[5] S. S. Suvanam, et. al, J. Appl. Phys. 117 (2015) 105309-1-9.

Google Scholar

[6] Q. Zhang, et. al, IEEE Electron. Lett. 29 (2008) 1027-1029.

Google Scholar

[7] B. A. Hull, et. al, Mater. Res. Soc. Symp. Proc. 911 (2006) 0911-B13-02-08.

Google Scholar

[8] A. Hallén, M. Usman, S.S. Suvanam, C. Henkel, D.M. Martin, M.K. Linnarsson, IOP Conf. Ser.: Mater. Sci. Eng. 56 (2014) 012007-1-8.

DOI: 10.1088/1757-899x/56/1/012007

Google Scholar

[9] S. M. Sze, Semiconductor Devices: Physics and Technology, Wiley, New York, (1985).

Google Scholar

[10] N. T. Son, et. al, Phys. Rev. B. 61 (2000) 10544-10546.

Google Scholar

[11] R. Schlaf, et. al, J. Vac. Sci. Technol. 17 (1999) 164-169.

Google Scholar

[12] J. Kohlscheen, et. al, J. Appl. Phys. 94, (2003) 3931-3938.

Google Scholar

[13] M. Avice, et. al, J. Appl. Phys. 102 (2007) 054513-1-7.

Google Scholar

[14] A. Constant, et al., J. Electrochem. Soc. 157 (2010) G136-G141.

Google Scholar

[15] M. Usman, A. Hallén, IEEE Electron. Lett. 32 (2011) 1653-1655.

Google Scholar

[16] J. E. Crowell, J. Vac. Sci. Technol. A. 21 (2003) S88-S95.

Google Scholar