The Formation of the Solidification Microstructure from Liquid Metal in Industrial Processes

Article Preview

Abstract:

This paper focuses on the role played by the liquid metal management on the solidification microstructure in industrial solidification processes. In particular attention is paid to the elimination of solidification defects by governing the microstructure evolution through fluid-dynamics and heat and mass transport in the liquid. The formation of hot tearing and gas porosities as well as columnar and equiaxed microstructures and micro and macro segregation are analyzed to explain how the liquid management is used to avoid defects. Examples on continuous casting and welding are also included.A very powerful tool for dealing with the complex phenomena associated with the solidification process is numerical modeling. Its increasingly growing use contemplates fluid-dynamics of the liquid phase, mass transport of solutes and solid-liquid interface evolution. Models using phase field and volume-averaging techniques, as well as models integrating multi-physics and multi-scale phenomena, are described as their use is taking on increasing importance in the design of solidification processes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

115-131

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. A. Bertram, P. R. Schunk, S. N. Kempka, F. Spadafora, R. Minisandram, The Macroscale simulation of remelting processes, JOM 3 (1998) 18-21.

DOI: 10.1007/s11837-998-0373-8

Google Scholar

[2] G. Jarczyk, H. Franz, Vacuum melting equipment and technologies for advanced materials, International Scientific Journal 56 (2012) 82-88.

Google Scholar

[3] D. Alghisi, M. Milano, L. Pazienza, From ESR to continuous CC-ESRR process: development in remelting technology towards better products and productivity, La metallurgia italiana 1 (2005) 21-32.

Google Scholar

[4] J. D. Miller, T. M. Pollok, Development and Application of an Optimization Protocol for Directional Solidification: Integrating Fundamental Theory, Experimentation and Modeling Tools, Proceedings of Superalloys 2012, (2012) 653-662.

DOI: 10.1002/9781118516430.ch73

Google Scholar

[5] J. Campbell, Complete Casting Handbook, Butterworth-Heinemann, Oxford, (2011).

Google Scholar

[6] J. Dantzig, M. Rappaz. Solidification, EPFL, Lausanne, (2010).

Google Scholar

[7] O. Cerri, Y. Chastel, M. Bellet, Hot tearing in steels during solidification: Experimental characterization and thermomechanical modeling, ASME J. Eng. Mater. Technol. 130 (2008) 1-7.

Google Scholar

[8] M: R. Ridolfi, Hot Tearing Modeling: A microstructural approach applied to steel solidification, Met. and Mater. Trans. B 45B (2014) 1425-1438.

DOI: 10.1007/s11663-014-0068-1

Google Scholar

[9] M.R. Ridolfi, O. Tassa, Formation of nitrogen bubbles during the solidification of 16–18% Cr high nitrogen austenitic stainless steels, Intermetallics 11 (2003) 1335-1338.

DOI: 10.1016/s0966-9795(03)00176-6

Google Scholar

[10] I. Steinbach, F. Pezzolla, B. Nestler, M. Seesselberg, R. Prieler, G. J. Schmitz, J. L. L. Rezende, A phase field concept for multiphase systems, Physica D 94 (1996) 135-147.

DOI: 10.1016/0167-2789(95)00298-7

Google Scholar

[11] W. J. Boettinger, J. A. Warren, C. Beckermann, A. Karma, Phase-field simulation of solidification, Annu. Rev. Mater. Res. 32 (2002) 163-194.

DOI: 10.1146/annurev.matsci.32.101901.155803

Google Scholar

[12] A. Karma, Phase-field Formulation for Quantitative Modeling of Alloy Solidification, Phys. Rev. Lett. 87 (2001) 1-5.

DOI: 10.1103/physrevlett.87.115701

Google Scholar

[13] A. Karma, W. J. Rappel, Quantitative phase-field modeling of dendritic growth in two and three dimensions, Phys. Rev. E 57 (1998) 4323-4349.

DOI: 10.1103/physreve.57.4323

Google Scholar

[14] A. A. Wheeler, W. J. Boettinger, G. B. McFadden. Phase-field model for isothermal phase transitions in binary alloys, Phys. Rev. A 45 (1992) 7424-7439.

DOI: 10.1103/physreva.45.7424

Google Scholar

[15] G. Caginalp, W. Xie, Phase-field and sharp-interface alloy models, Phys. Rev. E 48 (1993) 1897-(1909).

DOI: 10.1103/physreve.48.1897

Google Scholar

[16] J. A. Warren, W. J. Boettinger, Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method, Acta Metall. Mater. 43 (1995) 689-703.

DOI: 10.1016/0956-7151(94)00285-p

Google Scholar

[17] J. D. Hunt, Steady state columnar and equiaxed growth of dendrites and eutectic, Mater. Sci. Engng. 65 (1984) 75-83.

DOI: 10.1016/0025-5416(84)90201-5

Google Scholar

[18] M. R. Ridolfi, M. Milone, A. Singh, H. H. Shah, S. Misra, Study of the formation of central-line defect in api-grades strips produced from thin slabs at Tata Steel through solidification modelling, Proc. Conf. SteelSim2015 (2015).

Google Scholar

[19] J-O. Jeong, N. Goldenfeld, J. A. Dantzig, Phase field model for three-dimensional dendritic growth with fluid flow, Phys. Rev. E 64 (2001) 79-95.

DOI: 10.1103/physreve.64.041602

Google Scholar

[20] M. Zhu, D. Sun, S. Pan, Q, Zhang, D. Raabe, Modelling of dendritic growth during alloy solidification under natural convection, IOP Publishing: Modelling and Simulation in Mat. Sci. and Engng. 22 (2014) 034006.

DOI: 10.1088/0965-0393/22/3/034006

Google Scholar

[21] C. Beckermann,X. Tong, X, A. Karma, Velocity and shape selection of crystals in a forced flow, Physical Rev. E 61. 1 (2000) 49-52.

DOI: 10.1103/physreve.61.r49

Google Scholar

[22] X. Tong, C. Beckermann. A. Karma, Q. Li, Phase-field simulations of dendritic crystal growth in a forced flow. Physical Review E 63(6), (2001) 061601.

DOI: 10.1103/physreve.63.061601

Google Scholar

[23] Y. Lu, C. Beckermann, J. C. Ramirez, Three-dimensional phase-field simulations of the effect of convection on free dendritic growth, Journal of crystal growth 280. 1 (2005) 320-334.

DOI: 10.1016/j.jcrysgro.2005.03.063

Google Scholar

[24] M. C. Flemings, G. E. Nereo, Macrosegregation pt. 1. AIME Met Soc Trans 239. 9 (1967): 1449-1461.

Google Scholar

[25] C. Beckermann, Modelling of macrosegregation: applications and future needs, International Materials Reviews 47. 5 (2002) 243-261.

DOI: 10.1179/095066002225006557

Google Scholar

[26] M. Torabi Rad, P. Kotas, C. Beckermann, Rayleigh number criterion for formation of A-Segregates in steel castings and ingots Metallurgical and Materials Transactions A 44. 9 (2013) 4266-4281.

DOI: 10.1007/s11661-013-1761-4

Google Scholar

[27] J. Li, M. Wu, J. Hao, A. Ludwig, Simulation of channel segregation using a two-phase columnar solidification model–Part I: Model description and verification, Computational Materials Science 55 (2012) 407-418.

DOI: 10.1016/j.commatsci.2011.12.037

Google Scholar

[28] J. Li, M. Wu, J. Hao, A. Kharicha, A. Ludwig, Simulation of channel segregation using a two-phase columnar solidification model–Part II: Mechanism and parameter study, Computational Materials Science 55 (2012) 419-429.

DOI: 10.1016/j.commatsci.2011.12.021

Google Scholar

[29] J. J. Moore, N. A. Shah, Mechanisms of formation of A-and V-segregation in cast steel, International metals reviews 28. 1 (1983): 336-356.

DOI: 10.1179/imtr.1983.28.1.336

Google Scholar

[30] G. Lesoult, Macrosegregation in steel strands and ingots: Characterisation, formation and consequences, Materials Science and Engineering: A 413 (2005) 19-29.

DOI: 10.1016/j.msea.2005.08.203

Google Scholar

[31] T. B. Abbot, I. B. Hoyle, A. S. Woodyatt, The 3-dimensional structure of macrosegregation in continuously cast high-carbon steel, Steel research 65. 4 (1994): 128-131.

DOI: 10.1002/srin.199400941

Google Scholar

[32] H. Tomono, Y. Hitomi, S. Ura, A. Teraguchi, K. Iwata, K. Yasumoto, Mechanism of formation of the V-shaped segregation in the large section continuous cast bloom, Transactions of the Iron and Steel Institute of Japan 24. 11 (1984): 917-922.

DOI: 10.2355/isijinternational1966.24.917

Google Scholar

[33] K. Suzuki, T. Miyamoto, On the formation of the V-segregation in steel ingot, Trasactions ISIJ 14 (1974) 296-305.

Google Scholar

[34] E. J. Pickering, Macrosegregation in steel ingots: the applicability of modelling and characterisation techniques, ISIJ International 53 (2013) 935-949.

DOI: 10.2355/isijinternational.53.935

Google Scholar

[35] M. C. Flemings, Solidification processing, New York McGraw-Hill, (1974).

Google Scholar

[36] A. F. Giamei, B. H. Kear, On the nature of freckles in nickel base superalloys, Metallurgical Transactions 1. 8 (1970) 2185-2192.

DOI: 10.1007/bf02643434

Google Scholar

[37] M. C. Schneider, J. P. Gu, C. Beckermann, W. J. Boettinger, U. R. Kattner, Modeling of micro-and macrosegregation and freckle formation in single-crystal nickel-base superalloy directional solidification, Metallurgical and Materials Transactions A 28. 7 (1997).

DOI: 10.1007/s11661-997-0214-3

Google Scholar

[38] J. E. Lait, J. K. Brimacombe, Solidification during continuous casting of steel, ISS Transactions 1 (1982) 1-13.

Google Scholar

[39] K. S. Oh, Y. W. Chang, Macrosegregation behavior in continuously cast high carbon steel blooms and billets at the final stage of solidification in combination stirring, ISIJ international 35. 7 (1995) 866-875.

DOI: 10.2355/isijinternational.35.866

Google Scholar

[40] Y. U. Haiqi, Z. H. U. Miaoyong, Effect of electromagnetic stirring in mold on the macroscopic quality of high carbon steel billet, Acta Metallurgica Sinica (English Letters) 22. 6 (2009): 461-467.

DOI: 10.1016/s1006-7191(08)60124-6

Google Scholar

[41] M. Barna, J. Reiter, B. Willers, Investigation and validation of mould-electromagnetic stirring for continuous casting of round steel blooms, 2nd METEC ESTAD Conf. 2015, Duesseldorf Proc. of Metec2015, (2015).

Google Scholar

[42] H. Mizukami, M. Komatsu, T. Kitagawa, K. Kawakami, Effect of electromagnetic stirring at the final stage of solidification of continuously cast strand, Transactions of the Iron and Steel Institute of Japan 24. 11 (1984) 923-930.

DOI: 10.2355/isijinternational1966.24.923

Google Scholar

[43] M. Nakada, K. Mori, S. Nishioka, K. Tsutsumi, H. Murakami, T. Tsuchida, Reduction of macrosegregation by applying a DC magnetic field at the final stage of solidification, ISIJ International 37 (1997) 358-364.

DOI: 10.2355/isijinternational.37.358

Google Scholar

[44] G. Engström, H. Fredriksson, B. Rogberg, On the mechanism of macrosegregation formation in continuously cast steels, Scandinavian Journal of Metallurgy 12. 1 (1983) 3-12.

Google Scholar

[45] M. R. Bridge, G. D. Rogers, Structural effects and band segregate formation during the electromagnetic stirring of strand-cast steel, Metallurgical transactions B 15. 3 (1984) 581-589.

DOI: 10.1007/bf02657390

Google Scholar

[46] S. A. David, S. S. Babu, J. M. Vitek, David, Welding: Solidification and microstructure, Jom 55. 6 (2003): 14-20.

DOI: 10.1007/s11837-003-0134-7

Google Scholar

[47] X. Kong, O. Asserin, S. Gounand, P. Gilles, J. M. Bergheau, M. Medale, 3D finite element simulation of TIG weld pool, IOP Conference Series: Materials Science and Engineering 33. 1. IOP Publishing, (2012) 012025.

DOI: 10.1088/1757-899x/33/1/012025

Google Scholar

[48] S. Mokadem, C. Bezencon, J. -M. Drezet, A. Jacot, J. -D. Wagnière, W. Kurz, Microstructure Control during Single Crystal Laser Welding and Deposition of Ni-base Superalloys, Proceedings of Symposium on Solidification Processes and Microstructures TMS Annual Meeting, (2004).

Google Scholar

[49] H. Combeau, M. Zaloznic, S. Hans, P. E. Richy, Prediction of macrosegregation in steel ingots: Influence of the motion and the morphology of equiaxed grains, Metallurgical and materials transactions B 40. 3 (2009) 289-304.

DOI: 10.1007/s11663-008-9178-y

Google Scholar

[50] M. Wu, A. Ludwig, A. Karicha, Wu, An attempt to model shrinkage cavity coupled with macrosegregation in steel ingots, Proc. of the 6th International Conference on modelling and simulation of metallurgical processes in steelmaking (2015).

Google Scholar

[51] Y. Zheng, M. Wu, A. Karicha, A. Ludwig, Transport phenomena during solidification of a vertical casting of steel: a multiphase numerical study, Proc. of the 6th International Conference on modelling and simulation of metallurgical processes in steelmaking (2015).

Google Scholar