[1]
L. A. Bertram, P. R. Schunk, S. N. Kempka, F. Spadafora, R. Minisandram, The Macroscale simulation of remelting processes, JOM 3 (1998) 18-21.
DOI: 10.1007/s11837-998-0373-8
Google Scholar
[2]
G. Jarczyk, H. Franz, Vacuum melting equipment and technologies for advanced materials, International Scientific Journal 56 (2012) 82-88.
Google Scholar
[3]
D. Alghisi, M. Milano, L. Pazienza, From ESR to continuous CC-ESRR process: development in remelting technology towards better products and productivity, La metallurgia italiana 1 (2005) 21-32.
Google Scholar
[4]
J. D. Miller, T. M. Pollok, Development and Application of an Optimization Protocol for Directional Solidification: Integrating Fundamental Theory, Experimentation and Modeling Tools, Proceedings of Superalloys 2012, (2012) 653-662.
DOI: 10.1002/9781118516430.ch73
Google Scholar
[5]
J. Campbell, Complete Casting Handbook, Butterworth-Heinemann, Oxford, (2011).
Google Scholar
[6]
J. Dantzig, M. Rappaz. Solidification, EPFL, Lausanne, (2010).
Google Scholar
[7]
O. Cerri, Y. Chastel, M. Bellet, Hot tearing in steels during solidification: Experimental characterization and thermomechanical modeling, ASME J. Eng. Mater. Technol. 130 (2008) 1-7.
Google Scholar
[8]
M: R. Ridolfi, Hot Tearing Modeling: A microstructural approach applied to steel solidification, Met. and Mater. Trans. B 45B (2014) 1425-1438.
DOI: 10.1007/s11663-014-0068-1
Google Scholar
[9]
M.R. Ridolfi, O. Tassa, Formation of nitrogen bubbles during the solidification of 16–18% Cr high nitrogen austenitic stainless steels, Intermetallics 11 (2003) 1335-1338.
DOI: 10.1016/s0966-9795(03)00176-6
Google Scholar
[10]
I. Steinbach, F. Pezzolla, B. Nestler, M. Seesselberg, R. Prieler, G. J. Schmitz, J. L. L. Rezende, A phase field concept for multiphase systems, Physica D 94 (1996) 135-147.
DOI: 10.1016/0167-2789(95)00298-7
Google Scholar
[11]
W. J. Boettinger, J. A. Warren, C. Beckermann, A. Karma, Phase-field simulation of solidification, Annu. Rev. Mater. Res. 32 (2002) 163-194.
DOI: 10.1146/annurev.matsci.32.101901.155803
Google Scholar
[12]
A. Karma, Phase-field Formulation for Quantitative Modeling of Alloy Solidification, Phys. Rev. Lett. 87 (2001) 1-5.
DOI: 10.1103/physrevlett.87.115701
Google Scholar
[13]
A. Karma, W. J. Rappel, Quantitative phase-field modeling of dendritic growth in two and three dimensions, Phys. Rev. E 57 (1998) 4323-4349.
DOI: 10.1103/physreve.57.4323
Google Scholar
[14]
A. A. Wheeler, W. J. Boettinger, G. B. McFadden. Phase-field model for isothermal phase transitions in binary alloys, Phys. Rev. A 45 (1992) 7424-7439.
DOI: 10.1103/physreva.45.7424
Google Scholar
[15]
G. Caginalp, W. Xie, Phase-field and sharp-interface alloy models, Phys. Rev. E 48 (1993) 1897-(1909).
DOI: 10.1103/physreve.48.1897
Google Scholar
[16]
J. A. Warren, W. J. Boettinger, Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method, Acta Metall. Mater. 43 (1995) 689-703.
DOI: 10.1016/0956-7151(94)00285-p
Google Scholar
[17]
J. D. Hunt, Steady state columnar and equiaxed growth of dendrites and eutectic, Mater. Sci. Engng. 65 (1984) 75-83.
DOI: 10.1016/0025-5416(84)90201-5
Google Scholar
[18]
M. R. Ridolfi, M. Milone, A. Singh, H. H. Shah, S. Misra, Study of the formation of central-line defect in api-grades strips produced from thin slabs at Tata Steel through solidification modelling, Proc. Conf. SteelSim2015 (2015).
Google Scholar
[19]
J-O. Jeong, N. Goldenfeld, J. A. Dantzig, Phase field model for three-dimensional dendritic growth with fluid flow, Phys. Rev. E 64 (2001) 79-95.
DOI: 10.1103/physreve.64.041602
Google Scholar
[20]
M. Zhu, D. Sun, S. Pan, Q, Zhang, D. Raabe, Modelling of dendritic growth during alloy solidification under natural convection, IOP Publishing: Modelling and Simulation in Mat. Sci. and Engng. 22 (2014) 034006.
DOI: 10.1088/0965-0393/22/3/034006
Google Scholar
[21]
C. Beckermann,X. Tong, X, A. Karma, Velocity and shape selection of crystals in a forced flow, Physical Rev. E 61. 1 (2000) 49-52.
DOI: 10.1103/physreve.61.r49
Google Scholar
[22]
X. Tong, C. Beckermann. A. Karma, Q. Li, Phase-field simulations of dendritic crystal growth in a forced flow. Physical Review E 63(6), (2001) 061601.
DOI: 10.1103/physreve.63.061601
Google Scholar
[23]
Y. Lu, C. Beckermann, J. C. Ramirez, Three-dimensional phase-field simulations of the effect of convection on free dendritic growth, Journal of crystal growth 280. 1 (2005) 320-334.
DOI: 10.1016/j.jcrysgro.2005.03.063
Google Scholar
[24]
M. C. Flemings, G. E. Nereo, Macrosegregation pt. 1. AIME Met Soc Trans 239. 9 (1967): 1449-1461.
Google Scholar
[25]
C. Beckermann, Modelling of macrosegregation: applications and future needs, International Materials Reviews 47. 5 (2002) 243-261.
DOI: 10.1179/095066002225006557
Google Scholar
[26]
M. Torabi Rad, P. Kotas, C. Beckermann, Rayleigh number criterion for formation of A-Segregates in steel castings and ingots Metallurgical and Materials Transactions A 44. 9 (2013) 4266-4281.
DOI: 10.1007/s11661-013-1761-4
Google Scholar
[27]
J. Li, M. Wu, J. Hao, A. Ludwig, Simulation of channel segregation using a two-phase columnar solidification model–Part I: Model description and verification, Computational Materials Science 55 (2012) 407-418.
DOI: 10.1016/j.commatsci.2011.12.037
Google Scholar
[28]
J. Li, M. Wu, J. Hao, A. Kharicha, A. Ludwig, Simulation of channel segregation using a two-phase columnar solidification model–Part II: Mechanism and parameter study, Computational Materials Science 55 (2012) 419-429.
DOI: 10.1016/j.commatsci.2011.12.021
Google Scholar
[29]
J. J. Moore, N. A. Shah, Mechanisms of formation of A-and V-segregation in cast steel, International metals reviews 28. 1 (1983): 336-356.
DOI: 10.1179/imtr.1983.28.1.336
Google Scholar
[30]
G. Lesoult, Macrosegregation in steel strands and ingots: Characterisation, formation and consequences, Materials Science and Engineering: A 413 (2005) 19-29.
DOI: 10.1016/j.msea.2005.08.203
Google Scholar
[31]
T. B. Abbot, I. B. Hoyle, A. S. Woodyatt, The 3-dimensional structure of macrosegregation in continuously cast high-carbon steel, Steel research 65. 4 (1994): 128-131.
DOI: 10.1002/srin.199400941
Google Scholar
[32]
H. Tomono, Y. Hitomi, S. Ura, A. Teraguchi, K. Iwata, K. Yasumoto, Mechanism of formation of the V-shaped segregation in the large section continuous cast bloom, Transactions of the Iron and Steel Institute of Japan 24. 11 (1984): 917-922.
DOI: 10.2355/isijinternational1966.24.917
Google Scholar
[33]
K. Suzuki, T. Miyamoto, On the formation of the V-segregation in steel ingot, Trasactions ISIJ 14 (1974) 296-305.
Google Scholar
[34]
E. J. Pickering, Macrosegregation in steel ingots: the applicability of modelling and characterisation techniques, ISIJ International 53 (2013) 935-949.
DOI: 10.2355/isijinternational.53.935
Google Scholar
[35]
M. C. Flemings, Solidification processing, New York McGraw-Hill, (1974).
Google Scholar
[36]
A. F. Giamei, B. H. Kear, On the nature of freckles in nickel base superalloys, Metallurgical Transactions 1. 8 (1970) 2185-2192.
DOI: 10.1007/bf02643434
Google Scholar
[37]
M. C. Schneider, J. P. Gu, C. Beckermann, W. J. Boettinger, U. R. Kattner, Modeling of micro-and macrosegregation and freckle formation in single-crystal nickel-base superalloy directional solidification, Metallurgical and Materials Transactions A 28. 7 (1997).
DOI: 10.1007/s11661-997-0214-3
Google Scholar
[38]
J. E. Lait, J. K. Brimacombe, Solidification during continuous casting of steel, ISS Transactions 1 (1982) 1-13.
Google Scholar
[39]
K. S. Oh, Y. W. Chang, Macrosegregation behavior in continuously cast high carbon steel blooms and billets at the final stage of solidification in combination stirring, ISIJ international 35. 7 (1995) 866-875.
DOI: 10.2355/isijinternational.35.866
Google Scholar
[40]
Y. U. Haiqi, Z. H. U. Miaoyong, Effect of electromagnetic stirring in mold on the macroscopic quality of high carbon steel billet, Acta Metallurgica Sinica (English Letters) 22. 6 (2009): 461-467.
DOI: 10.1016/s1006-7191(08)60124-6
Google Scholar
[41]
M. Barna, J. Reiter, B. Willers, Investigation and validation of mould-electromagnetic stirring for continuous casting of round steel blooms, 2nd METEC ESTAD Conf. 2015, Duesseldorf Proc. of Metec2015, (2015).
Google Scholar
[42]
H. Mizukami, M. Komatsu, T. Kitagawa, K. Kawakami, Effect of electromagnetic stirring at the final stage of solidification of continuously cast strand, Transactions of the Iron and Steel Institute of Japan 24. 11 (1984) 923-930.
DOI: 10.2355/isijinternational1966.24.923
Google Scholar
[43]
M. Nakada, K. Mori, S. Nishioka, K. Tsutsumi, H. Murakami, T. Tsuchida, Reduction of macrosegregation by applying a DC magnetic field at the final stage of solidification, ISIJ International 37 (1997) 358-364.
DOI: 10.2355/isijinternational.37.358
Google Scholar
[44]
G. Engström, H. Fredriksson, B. Rogberg, On the mechanism of macrosegregation formation in continuously cast steels, Scandinavian Journal of Metallurgy 12. 1 (1983) 3-12.
Google Scholar
[45]
M. R. Bridge, G. D. Rogers, Structural effects and band segregate formation during the electromagnetic stirring of strand-cast steel, Metallurgical transactions B 15. 3 (1984) 581-589.
DOI: 10.1007/bf02657390
Google Scholar
[46]
S. A. David, S. S. Babu, J. M. Vitek, David, Welding: Solidification and microstructure, Jom 55. 6 (2003): 14-20.
DOI: 10.1007/s11837-003-0134-7
Google Scholar
[47]
X. Kong, O. Asserin, S. Gounand, P. Gilles, J. M. Bergheau, M. Medale, 3D finite element simulation of TIG weld pool, IOP Conference Series: Materials Science and Engineering 33. 1. IOP Publishing, (2012) 012025.
DOI: 10.1088/1757-899x/33/1/012025
Google Scholar
[48]
S. Mokadem, C. Bezencon, J. -M. Drezet, A. Jacot, J. -D. Wagnière, W. Kurz, Microstructure Control during Single Crystal Laser Welding and Deposition of Ni-base Superalloys, Proceedings of Symposium on Solidification Processes and Microstructures TMS Annual Meeting, (2004).
Google Scholar
[49]
H. Combeau, M. Zaloznic, S. Hans, P. E. Richy, Prediction of macrosegregation in steel ingots: Influence of the motion and the morphology of equiaxed grains, Metallurgical and materials transactions B 40. 3 (2009) 289-304.
DOI: 10.1007/s11663-008-9178-y
Google Scholar
[50]
M. Wu, A. Ludwig, A. Karicha, Wu, An attempt to model shrinkage cavity coupled with macrosegregation in steel ingots, Proc. of the 6th International Conference on modelling and simulation of metallurgical processes in steelmaking (2015).
Google Scholar
[51]
Y. Zheng, M. Wu, A. Karicha, A. Ludwig, Transport phenomena during solidification of a vertical casting of steel: a multiphase numerical study, Proc. of the 6th International Conference on modelling and simulation of metallurgical processes in steelmaking (2015).
Google Scholar